A072385 Primes which can be represented as the sum of a prime and its reverse.
383, 443, 463, 787, 827, 887, 929, 1009, 1049, 1069, 1151, 1171, 1231, 1373, 1453, 1493, 1777, 30203, 30403, 31013, 32213, 32413, 32423, 33023, 33223, 34033, 34843, 35053, 36263, 36653, 37273, 37463, 37663, 38083, 38273, 38873, 39293, 39883
Offset: 1
Examples
383 is a term because it is prime and it is the sum of prime 241 and its reverse 142.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..253 from M. F. Hasler)
- Matt Parker, 383 is cool, Numberphile series on YouTube, Feb. 15, 2017.
Crossrefs
Programs
-
Mathematica
f@n_:=(Select[# + IntegerReverse[#] & /@ Prime[Range[n]], PrimeQ@# && # <= Prime[n] &] // Union); f@3000 (* Harvey P. Dale, Jul 18 2018; corrected by Hans Rudolf Widmer, Aug 15 2024 *)
-
PARI
is_A072385(p)={isprime(p)&&forprime(q=p\10,p*9\10,A056964(q)==p&&return(1))} \\ A056964(n)=n+fromdigits(Vecrev(digits(n))). It is much faster to produce the terms as shown below, rather than to "select" them from a range of primes. - M. F. Hasler, Sep 26 2019
-
PARI
A072385=Set(apply(A056964, A061783)) \\ with, e.g.: A061783=select(is_A061783(p)={isprime(A056964(p))&&isprime(p)}, primes(8713)) - M. F. Hasler, Sep 26 2019
Formula
Extensions
Cross-references added by M. F. Hasler, Sep 26 2019
Comments