A072429 Numbers n for which there are exactly five k such that n = k + reverse(k).
55, 154, 505, 525, 545, 565, 585, 605, 625, 645, 665, 685, 1414, 1434, 1441, 1454, 1474, 1494, 1514, 1534, 1554, 1574, 1594, 2541, 5005, 6985, 14014, 14041, 14241, 14441, 14641, 14841, 15041, 15241, 15441, 15641, 15841, 15994, 18458, 19558
Offset: 1
Examples
55 = k + reverse(k) for k = 14, 23, 32, 41, 50; 1441 = k + reverse(k) for k = 1040, 1130, 1220, 1310, 1400.
Links
Programs
-
ARIBAS
var n,k,c,i,rev: integer; st,nst: string; end; m := 5; for n := 0 to 24600 do k := n div 2; c := 0; while k <= n and c < m + 1 do st := itoa(k); nst := ""; for i := 0 to length(st) - 1 do nst := concat(st[i],nst); end; rev := atoi(nst); if n = k + rev then inc(c); if k mod 10 <> 0 and k <> rev then inc(c); end; end; inc(k); end; if c = m then write(n,","); end; end;
-
Maple
N:= 10^5: revdigs:= proc(n) local L, i; L:= convert(n, base, 10); add(L[-i]*10^(i-1), i=1..nops(L)) end proc: V:= Vector(N): for x from 1 to N do v:= x + revdigs(x); if v <= N then V[v]:= V[v]+1 fi; od: select(t -> V[t]=5, [$1..N]); # Robert Israel, Jul 12 2019
Comments