A072434 Numbers n for which there are exactly ten k such that n = k + reverse(k).
1111, 1991, 2442, 3542, 5115, 6875, 11011, 14124, 15884, 17457, 18557, 19008, 19091, 19291, 19491, 19691, 19891, 20091, 20291, 20491, 20691, 20891, 24042, 24242, 24442, 24642, 24842, 25042, 25242, 25442, 25642, 25842, 34142, 34342
Offset: 1
Examples
2442 = k + reverse(k) for k = 1041, 1131, 1221, 1311, 1401, 2040, 2130, 2220, 2310, 2400.
Links
Programs
-
ARIBAS
var n,k,c,i,rev: integer; st,nst: string; end; m := 10; for n := 0 to 35000 do k := n div 2; c := 0; while k <= n and c < m + 1 do st := itoa(k); nst := ""; for i := 0 to length(st) - 1 do nst := concat(st[i],nst); end; rev := atoi(nst); if n = k + rev then inc(c); if k mod 10 <> 0 and k <> rev then inc(c); end; end; inc(k); end; if c = m then write(n,","); end; end;
-
Maple
N:= 10^5: revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: V:= Vector(N): for x from 1 to N do v:= x + revdigs(x); if v <= N then V[v]:= V[v]+1 fi od: select(t -> V[t]=10, [$1..N]); # Robert Israel, Jul 12 2019
Extensions
Offset changed by Robert Israel, Jul 12 2019
Comments