A072458 Shadow transform of Catalan numbers A000108.
0, 1, 0, 0, 0, 1, 1, 2, 0, 0, 1, 4, 1, 5, 4, 1, 0, 7, 2, 8, 3, 3, 7, 10, 2, 3, 9, 0, 5, 13, 9, 14, 0, 6, 12, 4, 3, 17, 14, 8, 4, 19, 8, 20, 9, 8, 19, 22, 1, 8, 6, 10, 12, 25, 6, 11, 11, 15, 25, 28, 14, 29, 28, 10, 0, 10, 15, 32, 19, 22, 17, 34, 11, 35, 32, 15, 22, 17, 21, 38, 3, 0, 36, 40, 19, 21
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4000
- Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150; see Definition 7 for the shadow transform.
- N. J. A. Sloane, Transforms.
Crossrefs
Cf. A072480.
Programs
-
Maple
a:= n-> add(`if`(modp(binomial(2*j,j)/(j+1), n)=0, 1, 0), j=0..n-1): seq(a(n), n=0..120); # Alois P. Heinz, Sep 16 2019
-
Mathematica
a[n_] := Sum[If[Mod[Binomial[2*j, j]/(j+1), n] == 0, 1, 0], {j, 0, n-1}]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Jan 07 2025, after Alois P. Heinz *)