A072466 Numbers with 11 odd integers in their Collatz (or 3x+1) trajectory.
57, 59, 114, 115, 118, 119, 228, 229, 230, 236, 237, 238, 456, 458, 460, 461, 465, 472, 473, 474, 476, 477, 507, 513, 912, 916, 917, 920, 922, 930, 931, 943, 944, 945, 946, 947, 948, 949, 952, 954, 971, 987, 1014, 1015, 1025, 1026, 1027, 1031, 1129, 1131
Offset: 1
References
- J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
- Index entries for 2-automatic sequences.
Programs
-
Maple
b:= proc(n) option remember; irem(n, 2, 'r')+ `if`(n=1, 0, b(`if`(n::odd, 3*n+1, r))) end: q:= n-> is(b(n)=11): select(q, [$1..2000])[]; # Alois P. Heinz, May 18 2022
-
Mathematica
ocollQ[n_]:=Length[Select[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&],OddQ[#]&]]==11; Select[Range[1140],ocollQ[#]&] (* Jayanta Basu, May 28 2013 *)
Comments