A072479 Surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1) = n*Pi^(n/2)*r^(n-1)/(n/2)! = S_n*Pi^floor(n/2)*r^(n-1); sequence gives denominator of S_n.
1, 1, 1, 1, 1, 3, 1, 15, 3, 105, 12, 945, 60, 10395, 360, 135135, 2520, 2027025, 20160, 34459425, 181440, 654729075, 1814400, 13749310575, 19958400, 316234143225, 239500800, 7905853580625, 3113510400, 213458046676875, 43589145600
Offset: 0
Examples
Sequence of S_n's begins 0, 2, 2, 4, 2, 8/3, 1, 16/15, 1/3, 32/105, 1/12, 64/945, ...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 10, Eq. 19.
- Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22; http://www.advancesindifferenceequations.com/content/2012/1/22 - From N. J. A. Sloane, Sep 04 2012
Links
- Eric Weisstein's World of Mathematics, Ball
- Eric Weisstein's World of Mathematics, Hypersphere
- Eric Weisstein's World of Mathematics, Four-Dimensional Geometry
Programs
-
Mathematica
f[n_] := Pi^(n/2 - Floor[n/2])*n/(n/2)!; Table[ Denominator[ f[n]], {n, 0, 30} ]
Extensions
More terms from Robert G. Wilson v, Aug 18 2002
Comments