cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072479 Surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1) = n*Pi^(n/2)*r^(n-1)/(n/2)! = S_n*Pi^floor(n/2)*r^(n-1); sequence gives denominator of S_n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 15, 3, 105, 12, 945, 60, 10395, 360, 135135, 2520, 2027025, 20160, 34459425, 181440, 654729075, 1814400, 13749310575, 19958400, 316234143225, 239500800, 7905853580625, 3113510400, 213458046676875, 43589145600
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2002

Keywords

Comments

Answer to question of how to extend the sequence 0, 2, 2 Pi r, 4 Pi r^2, 2 Pi^2 r^3, ...
Volume of n-dimensional sphere of radius r is V_n*r^n - see A072345/A072346.
Numerator of the rational coefficient of integral_{x>0} exp(-x^2)*x^n. [Jean-François Alcover, Apr 23 2013]

Examples

			Sequence of S_n's begins 0, 2, 2, 4, 2, 8/3, 1, 16/15, 1/3, 32/105, 1/12, 64/945, ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 10, Eq. 19.
  • Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22; http://www.advancesindifferenceequations.com/content/2012/1/22 - From N. J. A. Sloane, Sep 04 2012

Crossrefs

Cf. A072478. A072478(n)/A072479(n) = n*A072345(n)/A072346(n).

Programs

  • Mathematica
    f[n_] := Pi^(n/2 - Floor[n/2])*n/(n/2)!; Table[ Denominator[ f[n]], {n, 0, 30} ]

Extensions

More terms from Robert G. Wilson v, Aug 18 2002