cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A072345 Volume of n-dimensional sphere of radius r is V_n*r^n = Pi^(n/2)*r^n/(n/2)! = C_n*Pi^floor(n/2)*r^n; sequence gives numerator of C_n.

Original entry on oeis.org

1, 2, 1, 4, 1, 8, 1, 16, 1, 32, 1, 64, 1, 128, 1, 256, 1, 512, 1, 1024, 1, 2048, 1, 4096, 1, 8192, 1, 16384, 1, 32768, 1, 65536, 1, 131072, 1, 262144, 1, 524288, 1, 1048576, 1, 2097152, 1, 4194304, 1, 8388608, 1, 16777216, 1, 33554432, 1, 67108864, 1, 134217728, 1, 268435456
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2002

Keywords

Comments

Answer to question of how to extend the sequence 1, 2 r, Pi r^2, 4 Pi r^3 / 3, Pi^2 r^4 / 2, ...
Surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1). - see A072478/A072479.

Examples

			Sequence of C_n's begins 1, 2, 1, 4/3, 1/2, 8/15, 1/6, 16/105, 1/24, 32/945, 1/120, 64/10395, ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 9, Eq. 17.

Crossrefs

Programs

  • Magma
    [2^((n+1) div 2)*(1-(-1)^n)/2+(1+(-1)^n)/2 : n in [0..100]]; // Wesley Ivan Hurt, Jan 10 2017
    
  • Maple
    seq(seq(k^n, k=1..2), n=1..28); # Zerinvary Lajos, Jun 29 2007
  • Mathematica
    f[n_] := Pi^(n/2 - Floor[n/2])/(n/2)!; Table[ Numerator[ f[n]], {n, 0, 55} ]
    Riffle[2^Range[30],1,{1,-1,2}] (* or *) LinearRecurrence[{0,3,0,-2},{1,2,1,4},60] (* Harvey P. Dale, Oct 16 2013 *)
    CoefficientList[ Series[(-2x^3 - 2x^2 + 2x + 1)/(2x^4 - 3x^2 + 1), {x, 0, 56}], x] (* Robert G. Wilson v, Jul 31 2018 *)
  • Python
    def A072345(n): return 2<<(n>>1) if n&1 else 1 # Chai Wah Wu, Sep 24 2024

Formula

1 if n even, 2^((n+1)/2) if n odd.
a(n) = 3*a(n-2)-2*a(n-4). G.f.: (1+2*x-2*x^2-2*x^3)/((1-x)*(1+x)*(1-2*x^2)). [Colin Barker, Sep 04 2012]
a(n) = 2^((n+1)/2)*(1-(-1)^n)/2+(1+(-1)^n)/2. - Wesley Ivan Hurt, Jan 10 2017
E.g.f.: sqrt(2)*sinh(sqrt(2)*x) + cosh(x). - Ilya Gutkovskiy, Mar 16 2017

A072478 Surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1) = n*Pi^(n/2)*r^(n-1)/(n/2)! = S_n*Pi^floor(n/2)*r^(n-1); sequence gives numerator of S_n.

Original entry on oeis.org

0, 2, 2, 4, 2, 8, 1, 16, 1, 32, 1, 64, 1, 128, 1, 256, 1, 512, 1, 1024, 1, 2048, 1, 4096, 1, 8192, 1, 16384, 1, 32768, 1, 65536, 1, 131072, 1, 262144, 1, 524288, 1, 1048576, 1, 2097152, 1, 4194304, 1, 8388608, 1, 16777216, 1, 33554432, 1, 67108864, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2002

Keywords

Comments

Answer to question of how to extend the sequence 0, 2, 2 Pi r, 4 Pi r^2, 2 Pi^2 r^3, ...
Volume of n-dimensional sphere of radius r is V_n*r^n - see A072345/A072346.
a(2*n-1) = 2^n and for n>2 a(2*n)=1.
Denominator of the rational coefficient of integral_{x>0} exp(-x^2)*x^n. - Jean-François Alcover, Apr 23 2013
From Ilya Gutkovskiy, Aug 02 2016: (Start)
Numerator of n/Gamma(n/2+1).
More generally, the ordinary generating function for the surface area of the n-dimensional sphere of radius r is 2*x*(1 + exp(Pi*r^2*x^2)*Pi*r*x + exp(Pi*r^2*x^2)*Pi*r*erf(sqrt(Pi)*r*x)*x) = 2*x + 2*Pi*r*x^2 + 4*Pi*r^2*x^3 + 2*Pi^2*r^3*x^4 + (8*Pi^2*r^4/3)*x^5 + Pi^3*r^5*x^6 + ... (End)

Examples

			Sequence of S_n's begins 0, 2, 2, 4, 2, 8/3, 1, 16/15, 1/3, 32/105, 1/12, 64/945, ...
		

References

  • N. Cakic, D. Letic, B. Davidovic, The Hyperspherical functions of a derivative, Abstr. Appl. Anal. (2010) 364292 doi:10.1155/2010/364292
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 10, Eq. 19.

Crossrefs

Cf. A072479. A072478(n)/A072479(n) = n*A072345(n)/A072346(n).

Programs

  • Mathematica
    f[n_] := Pi^(n/2 - Floor[n/2])*n/(n/2)!; Table[ Numerator[ f[n]], {n, 0, 52}]
    CoefficientList[Series[x (2 + 2 x - 2 x^2 - 4 x^3 - x^5 + 2 x^7)/(1 - 3 x^2 + 2 x^4), {x, 0, 52}], x] (* Michael De Vlieger, Aug 01 2016 *)
    LinearRecurrence[{0,3,0,-2},{0,2,2,4,2,8,1,16,1},60] (* Harvey P. Dale, May 30 2018 *)
  • PARI
    concat(0, Vec(x*(2+2*x-2*x^2-4*x^3-x^5+2*x^7)/(1-3*x^2+2*x^4) + O(x^100))) \\ Colin Barker, Aug 01 2016

Formula

From Colin Barker, Sep 04 2012: (Start)
a(n) = 3*a(n-2)-2*a(n-4) for n>4.
G.f.: x*(2+2*x-2*x^2-4*x^3-x^5+2*x^7) / (1-3*x^2+2*x^4).
(End)
From Colin Barker, Aug 01 2016: (Start)
a(n) = (1+(-1)^n-2^((1+n)/2)*(-1+(-1)^n))/2 for n>4.
a(n) = 1 for n>4 and even.
a(n) = 2^((n+1)/2) for n>4 and odd.
(End)

Extensions

More terms from Robert G. Wilson v, Aug 18 2002

A074457 Consider surface area of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the best d.

Original entry on oeis.org

7, 2, 5, 6, 9, 4, 6, 4, 0, 4, 8, 6, 0, 5, 7, 6, 7, 8, 0, 1, 3, 2, 8, 3, 8, 3, 8, 8, 6, 9, 0, 7, 6, 9, 2, 3, 6, 6, 1, 9, 0, 1, 7, 2, 3, 7, 1, 8, 3, 2, 1, 4, 8, 5, 7, 5, 0, 9, 8, 7, 9, 6, 7, 8, 7, 7, 7, 1, 0, 9, 3, 4, 6, 7, 3, 6, 8, 2, 0, 2, 7, 2, 8, 1, 7, 7, 2, 0, 2, 3, 8, 4, 8, 9, 7, 9, 2, 4, 6, 9, 2, 6
Offset: 1

Views

Author

Robert G. Wilson v, Aug 22 2002

Keywords

Examples

			7.256946404860576780132838388690769236619017237183214857509879678777...
		

References

  • Nenad Cakic, Dusko Letic, and Branko Davidovic, The Hyperspherical functions of a derivative, Abstr. Appl. Anal. (2010) 364292 doi:10.1155/2010/364292
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.

Crossrefs

Surface area is A074456. Cf. A072478, A072479, A074455.

Programs

  • Mathematica
    RealDigits[ FindMinimum[ -n*Pi^(n/2)/(n/2)!, {n, 7}, WorkingPrecision -> 125] [[2, 1, 2]]] [[1]]
    x /. FindRoot[ PolyGamma[x/2] == Log[Pi], {x, 7}, WorkingPrecision -> 105] // RealDigits // First (* Jean-François Alcover, Mar 28 2013 *)

Formula

Equals 2 + A074455.

Extensions

Corrected by Eric W. Weisstein, Aug 31 2003
Corrected by Martin Fuller, Jul 12 2007

A074456 Consider surface area of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the resulting surface area.

Original entry on oeis.org

3, 3, 1, 6, 1, 1, 9, 4, 4, 8, 4, 9, 6, 2, 0, 0, 2, 6, 9, 1, 8, 6, 3, 0, 2, 4, 0, 1, 5, 5, 8, 2, 9, 7, 3, 5, 8, 0, 0, 4, 7, 2, 3, 2, 8, 4, 1, 0, 8, 7, 2, 5, 8, 5, 1, 3, 1, 0, 0, 1, 1, 8, 1, 5, 5, 4, 0, 3, 7, 5, 6, 5, 4, 6, 4, 7, 1, 8, 4, 3, 4, 4, 6, 6, 6, 0, 7, 4, 6, 0, 9, 4, 9, 3, 5, 1, 3, 8, 7
Offset: 2

Views

Author

Robert G. Wilson v, Aug 22 2002

Keywords

Comments

If you set v[n_] := Pi^(n/2)/(n/2)! and s[n_] := n*Pi^(n/2)/(n/2)! and then Plot[{6.283v[n - 2], s[n]}, {n, 0, 20}], the two curves are almost identical.

Examples

			33.1611944849620026918630240155829735800472328410872...
		

Crossrefs

The dimension is given in A074455.

Programs

  • Mathematica
    area[d_] := d * Pi^(d/2)/Gamma[d/2 + 1]; area[x /. FindRoot[PolyGamma[x/2] == Log[Pi], {x, 7}, WorkingPrecision -> 120]] (* Amiram Eldar, Jun 08 2023 *)

Extensions

Checked by Martin Fuller, Jul 12 2007

A164081 Floor of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

6, 39, 124, 259, 408, 512, 536, 481, 378, 264, 166, 94, 49, 24, 10, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The rounded values of this real sequence is A164082, the ceiling is A164083.
The surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/A072479.
There are only 17 nonzero terms. - G. C. Greubel, Sep 10 2017

Examples

			Table of approximate real values before taking integer part.
========================
n (2*Pi)^n / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, 2nd ed., New York: Springer-Verlag, p. 9, 1993.
  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., New York: Dover, 1973.
  • D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions, New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Maple
    A164081 := proc(n) (2*Pi)^n/(n-1)! ; floor(%) ; end: seq(A164081(n),n=1..80) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    Table[Floor[(2*Pi)^n/(n - 1)!], {n, 1, 100}] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    for(n=1,100, print1(floor((2*Pi)^n/(n-1)!), ", ")) \\ G. C. Greubel, Sep 10 2017

Formula

a(n) = floor( (2*Pi)^n/(n-1)! ).

Extensions

Definition corrected by R. J. Mathar, Sep 09 2009

A164082 Rounded value of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

6, 39, 124, 260, 408, 513, 537, 482, 379, 264, 166, 95, 50, 24, 11, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The floor of this real sequence is A164081, the ceiling is A164083.
The surface area of the n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/ A072479.
There are 18 nonzero terms in this sequence. - G. C. Greubel, Sep 11 2017

Examples

			Table of approximate real values before rounding up or down:
========================
n ((2*pi)^n) / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.
  • Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
  • Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Maple
    A164082 := proc(n) (2*Pi)^n/(n-1)! ; round(%) ; end: seq(A164082(n),n=1..80) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    Table[Round[(2*Pi)^n/(n - 1)!], {n, 1, 20}] (* G. C. Greubel, Sep 11 2017 *)
  • PARI
    for(n=1,20, print1(round((2*Pi)^n/(n-1)!), ", ")) \\ G. C. Greubel, Sep 11 2017

Formula

a(n) = round(((2*Pi)^n)/(n-1)!).

Extensions

Definition corrected by R. J. Mathar, Sep 09 2009

A164083 Ceiling of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

7, 40, 125, 260, 409, 513, 537, 482, 379, 265, 167, 95, 50, 25, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The rounded values of this real sequence is A164082, the floor is A164081.
The surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/A072479.

Examples

			Table of approximate real values before rounding up.
========================
n ((2*pi)^n) / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.
  • Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
  • Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[(2Pi)^n/(n-1)!],{n,60}] (* Harvey P. Dale, Jul 30 2020 *)

Formula

a(n) = ceiling(((2*pi)^n)/(n-1)!).

Extensions

Definition corrected - R. J. Mathar, Sep 09 2009
Showing 1-7 of 7 results.