A074455 Consider the volume of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the best d.
5, 2, 5, 6, 9, 4, 6, 4, 0, 4, 8, 6, 0, 5, 7, 6, 7, 8, 0, 1, 3, 2, 8, 3, 8, 3, 8, 8, 6, 9, 0, 7, 6, 9, 2, 3, 6, 6, 1, 9, 0, 1, 7, 2, 3, 7, 1, 8, 3, 2, 1, 4, 8, 5, 7, 5, 0, 9, 8, 7, 9, 6, 7, 8, 7, 7, 7, 1, 0, 9, 3, 4, 6, 7, 3, 6, 8, 2, 0, 2, 7, 2, 8, 1, 7, 7, 2, 0, 2, 3, 8, 4, 8, 9, 7, 9, 2, 4, 6, 9, 2, 6
Offset: 1
Examples
5.256946404860576780132838388690769236619017237183214857509879678777109...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 9.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 67.
Links
- Brian Hayes, An Adventure in the Nth Dimension, pp. 30-42 of M. Pitici, editor, The Best Writing on Mathematics 2012, Princeton Univ. Press, 2012. See p. 42. - From _N. J. A. Sloane_, Jan 13 2013; alternative link.
- Eric Weisstein's World of Mathematics, Ball.
Programs
-
Mathematica
x /. FindRoot[ PolyGamma[1 + x/2] == Log[Pi], {x, 5}, WorkingPrecision -> 105] // RealDigits // First (* Jean-François Alcover, Mar 28 2013 *)
-
PARI
hyperspheresurface(d)=2*Pi^(d/2)/gamma(d/2) hyperspherevolume(d)=hyperspheresurface(d)/d FindMax(fn_x,lo,hi)= { local(oldprecision, x, y, z); oldprecision = default(realprecision); default(realprecision, oldprecision+10); while (hi-lo > 10^-oldprecision, while (1, z = vector(2, i, lo*(3-i)/3 + hi*i/3); y = vector(2, i, eval(Str("x = z[" i "]; " fn_x))); if (abs(y[1]-y[2]) > 10^(5-default(realprecision)), break); default(realprecision, default(realprecision)+10); ); if (y[1] < y[2], lo = z[1], hi = z[2]); ); default(realprecision, oldprecision); (lo + hi) / 2. } default(realprecision, 105); A074455=FindMax("hyperspherevolume(x)", 1, 9) A074457=FindMax("hyperspheresurface(x)", 1, 9) A074454=hyperspherevolume(A074455) A074456=hyperspheresurface(A074457) /* David W. Cantrell */
-
PARI
2 * (solve(x=3, 4, psi(x) - log(Pi)) - 1) \\ Jianing Song, May 12 2025
Formula
d = root of Psi((1/2)*d + 1) = log(Pi).
d is 2 less than the number with decimal digits A074457 (the hypersphere dimension that maximizes hypersurface area). - Eric W. Weisstein, Dec 02 2014
Extensions
Corrected by Eric W. Weisstein, Aug 31 2003
Corrected by Martin Fuller, Jul 12 2007
Comments