A087300 Duplicate of A074455.
5, 2, 5, 6, 9, 4, 6, 4, 0, 4, 8, 6, 0, 5, 7, 6, 7, 8, 0, 1, 3, 2, 8, 3, 8, 3, 8, 8, 6, 9, 0, 7, 6, 9, 2
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
7.256946404860576780132838388690769236619017237183214857509879678777...
RealDigits[ FindMinimum[ -n*Pi^(n/2)/(n/2)!, {n, 7}, WorkingPrecision -> 125] [[2, 1, 2]]] [[1]] x /. FindRoot[ PolyGamma[x/2] == Log[Pi], {x, 7}, WorkingPrecision -> 105] // RealDigits // First (* Jean-François Alcover, Mar 28 2013 *)
5.277768021113400997282145864172846387529999284510173567761637340214864\ 12730547017110062048407258401284645...
d = x /. FindRoot[ PolyGamma[1 + x/2] == Log[Pi], {x, 5}, WorkingPrecision -> 105]; First[ RealDigits[ Pi^(d/2)/(d/2)!]][[1 ;; 99]] (* Jean-François Alcover, Apr 12 2013 *)
33.1611944849620026918630240155829735800472328410872...
area[d_] := d * Pi^(d/2)/Gamma[d/2 + 1]; area[x /. FindRoot[PolyGamma[x/2] == Log[Pi], {x, 7}, WorkingPrecision -> 120]] (* Amiram Eldar, Jun 08 2023 *)
12.764052935032681271263280950768574761998...
x /. FindRoot[ Pi^(x/2)/Gamma[x/2 + 1] == 1, {x, 12}, WorkingPrecision -> 105] // RealDigits[#, 10, 105] & // First (* Jean-François Alcover, Feb 12 2013 *)
solve(x=9,13,Pi^(x/2)-gamma(x/2+1)) \\ Charles R Greathouse IV, Jan 30 2016
3.6284732024302883900664191943453846183...
theta = x /. FindRoot[PolyGamma[x] == Log[Pi], {x, 4}, WorkingPrecision -> 105]; RealDigits[theta] // First
polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x)); solve(x=3.5, 3.7, polygamma(0, x) - log(Pi)) \\ Gheorghe Coserea, Sep 30 2018
d = 0.47658258230608529520761576885882324030164...
RealDigits[d/.FindRoot[Log[4/Pi] + PolyGamma[0, 1 + d/2], {d, 1}, WorkingPrecision -> 200]][[1]]
Comments