cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A074455 Consider the volume of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the best d.

Original entry on oeis.org

5, 2, 5, 6, 9, 4, 6, 4, 0, 4, 8, 6, 0, 5, 7, 6, 7, 8, 0, 1, 3, 2, 8, 3, 8, 3, 8, 8, 6, 9, 0, 7, 6, 9, 2, 3, 6, 6, 1, 9, 0, 1, 7, 2, 3, 7, 1, 8, 3, 2, 1, 4, 8, 5, 7, 5, 0, 9, 8, 7, 9, 6, 7, 8, 7, 7, 7, 1, 0, 9, 3, 4, 6, 7, 3, 6, 8, 2, 0, 2, 7, 2, 8, 1, 7, 7, 2, 0, 2, 3, 8, 4, 8, 9, 7, 9, 2, 4, 6, 9, 2, 6
Offset: 1

Views

Author

Robert G. Wilson v, Aug 22 2002

Keywords

Comments

From David W. Wilson, Jul 12 2007: (Start)
For an integer d, the volume of a d-dimensional unit ball is v(d) = Pi^(d/2)/(d/2)! and its surface area is area(d) = d*Pi^(d/2)/(d/2)! = d*v(d). If we interpolate n! = gamma(n+1) we can define v(d) and area(d) as continuous functions for (at least) d >= 0.
A074457 purports to minimize area(d). Since area(d+2) = 2*Pi*v(d), area() is minimized at y = x+2; therefore A074457 coincides with the current sequence except at the first term. (End)

Examples

			5.256946404860576780132838388690769236619017237183214857509879678777109...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 9.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 67.

Crossrefs

Cf. A074457.
The volume is given by A074454. Cf. A072345 & A072346.

Programs

  • Mathematica
    x /. FindRoot[ PolyGamma[1 + x/2] == Log[Pi], {x, 5}, WorkingPrecision -> 105] // RealDigits // First (* Jean-François Alcover, Mar 28 2013 *)
  • PARI
    hyperspheresurface(d)=2*Pi^(d/2)/gamma(d/2)
    hyperspherevolume(d)=hyperspheresurface(d)/d
    FindMax(fn_x,lo,hi)=
    {
    local(oldprecision, x, y, z);
    oldprecision = default(realprecision);
    default(realprecision, oldprecision+10);
    while (hi-lo > 10^-oldprecision,
    while (1,
    z = vector(2, i, lo*(3-i)/3 + hi*i/3);
    y = vector(2, i, eval(Str("x = z[" i "]; " fn_x)));
    if (abs(y[1]-y[2]) > 10^(5-default(realprecision)), break);
    default(realprecision, default(realprecision)+10);
    );
    if (y[1] < y[2], lo = z[1], hi = z[2]);
    );
    default(realprecision, oldprecision);
    (lo + hi) / 2.
    }
    default(realprecision, 105);
    A074455=FindMax("hyperspherevolume(x)", 1, 9)
    A074457=FindMax("hyperspheresurface(x)", 1, 9)
    A074454=hyperspherevolume(A074455)
    A074456=hyperspheresurface(A074457)
    /* David W. Cantrell */
    
  • PARI
    2 * (solve(x=3, 4, psi(x) - log(Pi)) - 1) \\ Jianing Song, May 12 2025

Formula

d = root of Psi((1/2)*d + 1) = log(Pi).
d is 2 less than the number with decimal digits A074457 (the hypersphere dimension that maximizes hypersurface area). - Eric W. Weisstein, Dec 02 2014

Extensions

Corrected by Eric W. Weisstein, Aug 31 2003
Corrected by Martin Fuller, Jul 12 2007

A074457 Consider surface area of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the best d.

Original entry on oeis.org

7, 2, 5, 6, 9, 4, 6, 4, 0, 4, 8, 6, 0, 5, 7, 6, 7, 8, 0, 1, 3, 2, 8, 3, 8, 3, 8, 8, 6, 9, 0, 7, 6, 9, 2, 3, 6, 6, 1, 9, 0, 1, 7, 2, 3, 7, 1, 8, 3, 2, 1, 4, 8, 5, 7, 5, 0, 9, 8, 7, 9, 6, 7, 8, 7, 7, 7, 1, 0, 9, 3, 4, 6, 7, 3, 6, 8, 2, 0, 2, 7, 2, 8, 1, 7, 7, 2, 0, 2, 3, 8, 4, 8, 9, 7, 9, 2, 4, 6, 9, 2, 6
Offset: 1

Views

Author

Robert G. Wilson v, Aug 22 2002

Keywords

Examples

			7.256946404860576780132838388690769236619017237183214857509879678777...
		

References

  • Nenad Cakic, Dusko Letic, and Branko Davidovic, The Hyperspherical functions of a derivative, Abstr. Appl. Anal. (2010) 364292 doi:10.1155/2010/364292
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.

Crossrefs

Surface area is A074456. Cf. A072478, A072479, A074455.

Programs

  • Mathematica
    RealDigits[ FindMinimum[ -n*Pi^(n/2)/(n/2)!, {n, 7}, WorkingPrecision -> 125] [[2, 1, 2]]] [[1]]
    x /. FindRoot[ PolyGamma[x/2] == Log[Pi], {x, 7}, WorkingPrecision -> 105] // RealDigits // First (* Jean-François Alcover, Mar 28 2013 *)

Formula

Equals 2 + A074455.

Extensions

Corrected by Eric W. Weisstein, Aug 31 2003
Corrected by Martin Fuller, Jul 12 2007

A244619 Decimal expansion of 'theta', the unique positive root of the equation polygamma(x) = log(Pi), where polygamma(x) gives gamma'(x)/gamma(x), that is the logarithmic derivative of the gamma function.

Original entry on oeis.org

3, 6, 2, 8, 4, 7, 3, 2, 0, 2, 4, 3, 0, 2, 8, 8, 3, 9, 0, 0, 6, 6, 4, 1, 9, 1, 9, 4, 3, 4, 5, 3, 8, 4, 6, 1, 8, 3, 0, 9, 5, 0, 8, 6, 1, 8, 5, 9, 1, 6, 0, 7, 4, 2, 8, 7, 5, 4, 9, 3, 9, 8, 3, 9, 3, 8, 8, 5, 5, 4, 6, 7, 3, 3, 6, 8, 4, 1, 0, 1, 3, 6, 4, 0, 8, 8, 6, 0, 1, 1, 9, 2, 4, 4, 8, 9, 6, 2, 3, 4, 6, 3, 4, 7, 8
Offset: 1

Views

Author

Jean-François Alcover, Jul 02 2014

Keywords

Comments

This constant appears in d_a = 2*theta = 7.2569464... and d_v = 2*(theta-1) = 5.2569464..., the fractional dimensions at which d-dimensional spherical surface area and volume, respectively, are maximized. [after Steven Finch]

Examples

			3.6284732024302883900664191943453846183...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5.4 Gamma Function, p. 34.

Crossrefs

Programs

  • Mathematica
    theta = x /. FindRoot[PolyGamma[x] == Log[Pi], {x, 4}, WorkingPrecision -> 105]; RealDigits[theta] // First
  • PARI
    polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x));
    solve(x=3.5, 3.7, polygamma(0, x) - log(Pi)) \\ Gheorghe Coserea, Sep 30 2018
Showing 1-3 of 3 results.