A072512 Product of all n - d, where 1 < d < n and d is a divisor of n.
1, 1, 1, 2, 1, 12, 1, 24, 6, 40, 1, 4320, 1, 84, 120, 1344, 1, 25920, 1, 43200, 252, 220, 1, 31933440, 20, 312, 432, 183456, 1, 136080000, 1, 322560, 660, 544, 840, 12563527680, 1, 684, 936, 919296000, 1, 1155772800, 1, 1219680, 1814400, 1012, 1
Offset: 1
Examples
For n = 16 the nontrivial divisors d are 2,4 and 8, so a(16) = (16-2)*(16-4)*(16-8) = 14*12*8 = 1344.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A072513.
Programs
-
Maple
f:= proc(n) local d; mul(n-d, d = numtheory:-divisors(n) minus {1,n}) end proc: map(f, [$1..50]); # Robert Israel, Dec 30 2024
-
PARI
a(n) = my(d=divisors(n)); prod(j=2, matsize(d)[2]-1, n-d[j]);
Extensions
Edited and extended by Klaus Brockhaus, Jul 31 2002
Comments