A072570 Even interprimes i = (p+q)/2 (where p, q are consecutive primes) such that (q-p)/2 is not divisible by 3.
4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 120, 138, 144, 150, 180, 186, 192, 198, 228, 240, 246, 270, 282, 288, 300, 312, 324, 342, 348, 414, 420, 426, 432, 462, 522, 552, 570, 582, 600, 618, 636, 642, 660, 696, 714, 780, 792, 810, 816, 822, 828, 834, 846, 858
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a = Table[Prime[n], {n, 2, 200}]; b = {}; Do[d = (a[[n + 1]] - a[[n]])/2; If[ EvenQ[ a[[n]] + d] && (Mod[d, 6] == 5 || Mod[d, 6] == 1), b = Append[b, a[[n]] + d]], {n, 1, 198}]; b Mean/@Select[Partition[Prime[Range[200]],2,1],EvenQ[Mean[#]] && !Divisible[ (#[[2]]-#[[1]])/2,3]&] (* Harvey P. Dale, Sep 27 2017 *)
-
PARI
q=3;forprime(p=5,1e3,(s=q+q=p)%4==0 && (s-2*p)%3 && print1(s/2",")) \\ M. F. Hasler, Nov 29 2013
-
PARI
is_A072570(n)=my(p=precprime(n));nextprime(n)+p==2*n && (n-p)%3 && !bittest(n,0) \\ M. F. Hasler, Nov 30 2013
Formula
If d = (P_{n+1} - P_n)/2 is even & d/2 == +/- 1 (mod 6), then P_n + d = (P_{n+1} + P_n)/2 is in the sequence. [Corrected by M. F. Hasler, Nov 29 2013]
Extensions
Edited by N. J. A. Sloane and Robert G. Wilson v, Jun 27 2002
Comments