cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072570 Even interprimes i = (p+q)/2 (where p, q are consecutive primes) such that (q-p)/2 is not divisible by 3.

Original entry on oeis.org

4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 120, 138, 144, 150, 180, 186, 192, 198, 228, 240, 246, 270, 282, 288, 300, 312, 324, 342, 348, 414, 420, 426, 432, 462, 522, 552, 570, 582, 600, 618, 636, 642, 660, 696, 714, 780, 792, 810, 816, 822, 828, 834, 846, 858
Offset: 1

Views

Author

Marco Matosic, Jun 24 2002

Keywords

Comments

A superset of A014574. [R. J. Mathar, Mar 03 2009]

Crossrefs

Cf. A024675, A072571. A072568 is union of A072571 and this sequence.

Programs

  • Mathematica
    a = Table[Prime[n], {n, 2, 200}]; b = {}; Do[d = (a[[n + 1]] - a[[n]])/2; If[ EvenQ[ a[[n]] + d] && (Mod[d, 6] == 5 || Mod[d, 6] == 1), b = Append[b, a[[n]] + d]], {n, 1, 198}]; b
    Mean/@Select[Partition[Prime[Range[200]],2,1],EvenQ[Mean[#]] && !Divisible[ (#[[2]]-#[[1]])/2,3]&] (* Harvey P. Dale, Sep 27 2017 *)
  • PARI
    q=3;forprime(p=5,1e3,(s=q+q=p)%4==0 && (s-2*p)%3 && print1(s/2",")) \\ M. F. Hasler, Nov 29 2013
    
  • PARI
    is_A072570(n)=my(p=precprime(n));nextprime(n)+p==2*n && (n-p)%3 && !bittest(n,0) \\ M. F. Hasler, Nov 30 2013

Formula

If d = (P_{n+1} - P_n)/2 is even & d/2 == +/- 1 (mod 6), then P_n + d = (P_{n+1} + P_n)/2 is in the sequence. [Corrected by M. F. Hasler, Nov 29 2013]

Extensions

Edited by N. J. A. Sloane and Robert G. Wilson v, Jun 27 2002