A072571 Even interprimes i = (p+q)/2 (where p, q are consecutive primes) such that (q-p)/2 is divisible by 3.
26, 34, 50, 56, 64, 76, 86, 134, 154, 160, 170, 176, 236, 254, 260, 266, 274, 334, 356, 370, 376, 386, 436, 446, 506, 532, 544, 560, 566, 574, 590, 596, 604, 610, 650, 656, 680, 730, 736, 754, 944, 950, 974, 980, 994, 1016, 1036, 1066, 1078, 1100, 1106
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = Table[Prime[n], {n, 2, 200}]; b = {}; Do[d = (a[[n + 1]] - a[[n]])/2; If[ EvenQ[ a[[n]] + d] && Mod[d, 6] == 3, b = Append[b, a[[n]] + d]], {n, 1, 198}]; b Select[Mean/@Select[Partition[Prime[Range[200]],2,1],Divisible[(#[[2]]- #[[1]])/ 2,3]&],EvenQ] (* Harvey P. Dale, May 09 2021 *)
Formula
(P_n+1 - P_n)/2 is even but not divisible by 4.
Extensions
Edited by N. J. A. Sloane and Robert G. Wilson v, Jun 27 2002