A072576 Limit of number of compositions (ordered partitions) of m into distinct parts where largest part is exactly m-n, for m sufficiently large given n.
1, 2, 2, 8, 8, 14, 38, 44, 68, 98, 242, 272, 440, 590, 878, 1772, 2180, 3194, 4466, 6320, 8432, 16190, 19262, 28580, 38276, 54314, 70730, 99152, 163328, 204230, 286670, 386132, 527132, 695978, 941738, 1220984, 1950128, 2390294, 3321398, 4342148, 5929532, 7616642, 10284410
Offset: 0
Keywords
Examples
a(3) = 8 because for any m > 6 the number of compositions of e.g. m=7 into distinct parts where the largest part is exactly m-3 = 7-3 = 4 is eight, since 7 can be written as 4+3 = 4+2+1 = 4+1+2 = 3+4 = 2+4+1 = 2+1+4 = 1+4+2 = 1+2+4. Note that in the example immediately above, 4 corresponds to the red square, since it is greater than--and therefore distinct from--parts 1,2 and 3, which correspond to the distinct white tiles. More generally, for the compositions of n having all parts distinct, the red square must correspond to a positive integer > n in order for the number of resulting compositions to be a(n). - _Gregory L. Simay_, Oct 25 2019
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
- Index entries for sequences related to compositions
Crossrefs
Cf. A072575.
Cf. A032020. - Alois P. Heinz, Dec 12 2012
Programs
-
Maple
b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y) -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0))) end: a:= proc(n) local l; l:= b(n, n): add( i! * l[i], i=1..nops(l)) end: seq(a(n), n=0..50); # Alois P. Heinz, Dec 12 2012
-
Mathematica
b[n_, i_] := If[n == 0, {1}, If[i<1, {}, Plus @@ PadRight[{b[n, i-1], If[i>n, {}, Prepend[b[n-i, i-1], 0]]}]]]; a[n_] := Module[{l}, l = b[n, n]; Sum[i!*l[[i]], {i, 1, Length[l]}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 31 2014, after Alois P. Heinz *)
-
PARI
N=66; q='q+O('q^N); gf=sum(n=0,N, (n+1)!*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) ); Vec(gf) /* Joerg Arndt, Oct 20 2012 */
Formula
a(n) = Sum_k (k+1)! * A008289(n,k). - Alois P. Heinz, Dec 12 2012
Comments