cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A072577 Numbers k such that k and the k-th prime have the same number of 0's in their binary representation.

Original entry on oeis.org

5, 6, 20, 22, 24, 28, 31, 32, 34, 37, 41, 42, 49, 50, 67, 68, 81, 82, 84, 88, 89, 93, 94, 138, 139, 140, 141, 142, 143, 147, 151, 157, 165, 192, 194, 198, 200, 202, 206, 207, 232, 236, 241, 262, 265, 270, 271, 284, 285, 295, 301, 328, 329, 332, 333, 337
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2002

Keywords

Examples

			In binary representation 20 and A000040(20) = 71 have three 0's: 13 = '10100' and 71 = '1000111', therefore 20 is a term.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := DigitCount[k, 2, 0] == DigitCount[Prime[k], 2, 0]; Select[Range[350], q] (* Amiram Eldar, Jul 28 2025 *)

Formula

A023416(a(n)) = A023416(A072580(n)) = A035103(n).
a(n) = A049084(A072580(n)).

A072581 a(n) = A000040(A072578(n)).

Original entry on oeis.org

19, 53, 139, 193, 311, 313, 409, 577, 641, 719, 787, 809, 1033, 1061, 1097, 1171, 1193, 1289, 1627, 1637, 1657, 1669, 1693, 1699, 1747, 1811, 1877, 1889, 2083, 2089, 2153, 2161, 2179, 2203, 2213, 2273, 2311, 2659, 2689, 2753, 3169, 3677, 3727, 3733
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2002

Keywords

Examples

			In binary representation 80 = '1010000' has five 0's and A000040(80) = 409 = '110011001' has five 1's: therefore 409 is a term.
		

Crossrefs

Programs

  • Mathematica
    With[{m = 600}, Select[Transpose[{Range[m], Prime[Range[m]]}], DigitCount[First[#], 2, 0] == DigitCount[Last[#], 2, 1] &]][[;; , 2]] (* Amiram Eldar, Jul 28 2025 *)

Formula

A000120(a(n)) = A023416(A072578(n)) = A014499(n).

A072582 a(n) = A000040(A072579(n)).

Original entry on oeis.org

2, 17, 41, 101, 157, 179, 181, 197, 227, 229, 271, 277, 293, 347, 349, 373, 397, 401, 449, 563, 571, 587, 601, 619, 647, 661, 757, 797, 811, 821, 829, 853, 929, 947, 953, 971, 977, 997, 1039, 1103, 1129, 1213, 1231, 1237, 1303, 1307, 1409, 1433, 1459
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2002

Keywords

Examples

			In binary representation 70 = '1000110' has three 1's and A000040(70) = 349 = '101011101' has three 1's: therefore 349 is a term.
		

Crossrefs

Programs

  • Mathematica
    With[{m = 300}, Select[Transpose[{Range[m], Prime[Range[m]]}], DigitCount[First[#], 2, 1] == DigitCount[Last[#], 2, 0] &]][[;; , 2]] (* Amiram Eldar, Jul 28 2025 *)

Formula

A023416(a(n)) = A000120(A072579(n)) = A035103(n).

A072584 a(n) = A000040(A072583(n)).

Original entry on oeis.org

3, 7, 23, 29, 31, 37, 43, 47, 59, 61, 103, 109, 137, 149, 151, 163, 167, 173, 191, 199, 223, 233, 239, 241, 251, 257, 263, 307, 317, 359, 367, 379, 383, 431, 439, 443, 463, 467, 479, 499, 503, 509, 541, 557, 569, 599, 607, 613, 617, 631, 643, 653, 659, 673
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 120}, Select[Transpose[{Range[m], Prime[Range[m]]}], Intersection @@ DigitCount[#, 2] == {} &]][[;; , 2]] (* Amiram Eldar, Jul 28 2025 *)
Showing 1-4 of 4 results.