cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072616 Number of essentially different ways of arranging numbers 1 through 2n around a circle so that the sum of each pair of adjacent numbers is prime and the odd (or even) numbers are in order.

Original entry on oeis.org

1, 1, 1, 1, 4, 8, 2, 5, 18, 2, 9, 100, 80, 224, 567, 200, 225, 2535, 1573, 10890, 132651, 34476, 79768, 319740, 42282, 257337, 3445032, 4274240, 36781568, 260272120
Offset: 1

Views

Author

T. D. Noe, Jun 25 2002

Keywords

Comments

A restricted form of the prime circle problem whose sequence is A051252. Note that a(2)=1 because the two solutions are essentially the same. The number of solutions is the same for odd or even numbers in order because a solution having the odd numbers in order can be converted to a solution having even numbers in order by subtracting 1 from even numbers and adding 1 to odd numbers. For example, {1, 2, 3, 8, 5, 6, 7, 4, 9, 10} becomes {2, 1, 4, 7, 6, 5, 8, 3, 10, 9}. Is the number of solutions always positive? See A072617 for some simple solutions to the prime circle problem.

Examples

			a(5) = 4 because there are four ways: {1,2,3,8,5,6,7,4,9,10}, {1,2,3,8,5,6,7,10,9,4}, {1,4,3,8,5,6,7,10,9,2} and {1,10,3,8,5,6,7,4,9,2}.
		

Crossrefs

Programs

  • Mathematica
    maxN=14; $RecursionLimit=500; try[lev_] := Module[{t, j}, If[lev>2n, (*found a solution*)(*Print[soln]; *) cnt++, (*else append another number to the soln list*) t=soln[[lev-1]]; If[OddQ[lev], (*odd level*) soln[[lev]]=lev; try[lev+1]; soln[[lev]]=0, For[j=1, j<=Length[s[[t]]], j++, (*even level*) If[ !MemberQ[soln, s[[t]][[j]]], soln[[lev]]=s[[t]][[j]]; try[lev+1]; soln[[lev]]=0]]]]]; For[lst={}; n=1, n<=maxN, n++, s=Table[{}, {2n}]; For[i=1, i<=2n, i=i+2, For[j=1, j<=2n, j++, If[i!=j&&PrimeQ[i+j]&&PrimeQ[Mod[i+2, 2n]+j], AppendTo[s[[i]], j]]]]; soln=Table[0, {2n}]; soln[[1]]=1; cnt=0; try[2]; AppendTo[lst, cnt]]; lst