A072643 Half of the binary width of the terms of A014486, the number of digits in A063171(n)/2.
0, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{i, c, a}, i = c = 0; a = 1; While[n>c, a *= (4*i+2)/(i+2); i++; c += a]; i]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 26 2017, from Sage code *) Flatten[Array[Table[#, CatalanNumber[#]]&, 7, 0]] (* Paolo Xausa, Feb 13 2024 *)
-
Sage
def A072643(n) : i = c = 0; a = 1 while n > c : a *= (4*i+2)/(2+i) i += 1; c += a return i [A072643(n) for n in (0..100)] # Peter Luschny, Sep 07 2012
Formula
Sum_{n>=1} (-1)^(n+1)/a(n) = Sum_{n>=1} (-1)^(n+1)/(2^n-1) = 0.76449978034844420919... . - Amiram Eldar, Feb 18 2024