A072730 Smallest of 5 consecutive integers divisible respectively by 5 consecutive primes.
788, 789, 3098, 5408, 7718, 10028, 12338, 14648, 15804, 16958, 19268, 21578, 23888, 26198, 28508, 30818, 30819, 33128, 35438, 37748, 40058, 40830, 42368, 44678, 45834, 46988, 49298, 51608, 53918, 56228, 58538, 60848, 60849, 63158
Offset: 1
Keywords
Examples
3098 is a term as 3098, 3099, 3100, 3101 and 3102 are divisible by 2, 3, 5, 7 and 11 respectively.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_Integer] := Flatten[ Table[ #1] & @@@ FactorInteger[n]]; NextPrim[n_] := Block[ {k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; Do[ p = f[ n ]; l = Length[ p ]; t = Table[n + i, {i, 0, 4} ]; k = 1; While[ k < l + 1 && Union[ Mod[ t, NestList[ NextPrim, p[[ k ]], 4 ]]] != {0}, k++ ]; If[ k < l + 1, Print[ n ]], {n, 2, 72397} ] cicpQ[n_]:=Module[{num=Range[n,n+4],pr=PrimePi[n+4]-4},Total [Boole[ AllTrue[ #, IntegerQ]&/@Table[num/Prime[Range[k,k+4]],{k,pr}]]]>0]; Select[ Range[ 64000],cicpQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 11 2019 *)