A072753 Maximum gap in two-stage prime-sieves.
2, 4, 10, 24, 31, 42, 60, 74, 94, 117, 148, 173, 213, 236, 275, 316, 364, 409, 436
Offset: 3
Examples
a(5) = 10 because c(3)=2, d(3)=4, c(4)=1, d(4)=3, c(5)=4, d(5)=6 satisfy the requirements: 1 == 1 (mod 7), 2 == 2 (mod 5), 3 == 3 (mod 7), 4 == 4 (mod 5), 5 == 5 (mod 11), 6 == 6 (mod 11), 7 == 2 (mod 5), 8 == 1 (mod 7), 9 == 4 (mod 5), 10 == 3 (mod 7).
Links
- John F. Morack, Sequences and Mods for a(17) and a(18)
- John F. Morack, Mod Sets and Sequences for Terms a(17)-a(19)
- Mario Ziller, John F. Morack, Divisibility in paired progressions, Goldbach’s conjecture, and the infinitude of prime pairs, arXiv:1706.00317 [math.NT], 2017.
- Mario Ziller, John F. Morack, On the computation of the generalised Jacobsthal function for paired progressions, arXiv:1706.03668 [math.NT], 2017.
Formula
Let p(n) be the sequence of primes, i.e., p(1)=2. For n>=3 we define a(n) = max { m IN N | EXIST c(k), d(k) IN N, k=3, .., n : FOR ALL i IN {1, .., m} EXISTS j IN {3, .., n} : i == c(j) (mod p(j)) OR i == d(j) (mod p(j)) }
a(n) = (A288815(n) - 6)/6. - Mario Ziller, Jun 19 2017
Extensions
a(11) from Mario Ziller, May 30 2005
a(12) from Mario Ziller, Jun 20 2013
a(13) from Mario Ziller, Sep 26 2014
a(14)-a(15) from Mario Ziller, Aug 06 2015
a(16) from Giovanni Resta, Aug 06 2015
a(17)-a(18) from John F. Morack Jan 03 2016
a(19) from John F. Morack Jan 08 2016
a(19) corrected and a(20)-a(21) added by Mario Ziller, Jun 17 2017
Comments