A072808 Smallest m such that sigma(m) mod phi(m) = n or 0 if no solution exists.
4, 5, 8, 24, 0, 22, 16, 21, 450, 40, 25, 48, 50, 136, 32, 110, 100, 90, 144, 88, 0, 656, 121, 102, 0, 80, 169, 96, 0, 68, 64, 55, 676, 464, 289, 65, 0, 117, 162, 91, 0, 116, 225, 85, 0, 272, 529, 95, 0, 148, 288, 133, 0, 164, 0, 115, 0, 160, 841, 147, 0, 333, 128, 247
Offset: 1
Keywords
Examples
For n=4: a(4)=24 since sigma(24)=60, phi(24)=8 and Mod(60, 8)=4.
Programs
-
Maple
V:= Vector(100): for m from 2 to 10^7 do v:= numtheory:-sigma(m) mod numtheory:-phi(m); if v > 0 and v <= 100 and V[v] = 0 then V[v]:= m fi od: convert(V,list); # Robert Israel, Nov 30 2024
-
Mathematica
f[x_] := Mod[DivisorSigma[1, x], EulerPhi[x]]; t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 10000000000}]; t
Extensions
Name corrected by Sean A. Irvine, Oct 30 2024
Name corrected by Robert Israel, Nov 30 2024
Comments