cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072836 Exponents occurring in expansion of F_10(q^2).

Original entry on oeis.org

0, 9, 16, 20, 21, 24, 25, 29, 36, 40, 41, 44, 45, 49, 56, 60, 61, 64, 65, 69, 76, 80, 81, 84, 85, 89, 96, 100, 101, 104, 105, 109, 116, 120, 121, 124, 125, 129, 136, 140, 141, 144, 145, 149, 156, 160, 161, 164, 165, 169, 176, 180, 181, 184, 185, 189, 196, 200, 201, 204, 205, 209, 216
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2002

Keywords

Comments

Nonnegative numbers congruent to {0, 1, 4, 5, 9, 16} (mod 20), except for {1, 4, 5}. Also, norms of vectors in the A*9 lattice. - _Andrey Zabolotskiy, Nov 10 2021

Crossrefs

Cf. A023921.

Programs

  • Mathematica
    f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; F[10,q_]:= f[q^5, q^5]^10/f[q, q] - 8*q^2*f[q^5, q^5]^5* QPochhammer[q^10]^5/QPochhammer[q^2] - (27*q^4*f[q^5, q^5]^5 - 125*q^9*f[q^5, q^5]*f[q^10, q^30]^4 + 5*q^5*f[q^5, q^5]*f[q^2, q^6]^4)* QPochhammer[q^20]^5/QPochhammer[q^4] - 17*q^5*f[q, q]*f[q^5, q^15]^8 + 2*q*f[q, q]*f[q^5, q^5]^4*f[q^2, q^6]^4 - 20*q^8*f[q, q]*QPochhammer[q^20]^10/QPochhammer[q^4]^2 + 5*q^4*f[q, q]*QPochhammer[q^10]^10/QPochhammer[q^2]^2; cfs = CoefficientList[Series[F[10, q], {q, 0, 500}], q]; Take[Pick[Range[Length[cfs]] - 1, Sign[Abs[cfs]], 1], 50] (* G. C. Greubel, Apr 16 2018 *)

Formula

G.f.: -x*(5*x^6-x^5-3*x^4-x^3-4*x^2-7*x-9) / (x^7-x^6-x+1). - Colin Barker, Jul 31 2013
a(n) = 20*floor((n-1)/6)+9,16,20,21,24,25 for n == 1,2,3,4,5,0 (mod 6) respectively, for n>0. - Jerzy R Borysowicz, Oct 23 2022

Extensions

Terms a(27) onward added by G. C. Greubel, Apr 16 2018