cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072861 a(n) = sigma(n)^2.

Original entry on oeis.org

1, 9, 16, 49, 36, 144, 64, 225, 169, 324, 144, 784, 196, 576, 576, 961, 324, 1521, 400, 1764, 1024, 1296, 576, 3600, 961, 1764, 1600, 3136, 900, 5184, 1024, 3969, 2304, 2916, 2304, 8281, 1444, 3600, 3136, 8100, 1764, 9216, 1936, 7056, 6084, 5184, 2304, 15376, 3249
Offset: 1

Views

Author

N. J. A. Sloane, Jul 26 2002

Keywords

References

  • S. Ramanujan, Some formulas in the analytic theory of numbers, Mess. Math. 45 (1915), 81-84, eq. 15. (Reprinted in Collected Papers of Srinivasa Ramanujan, Chelsea Publ., New York 1962, 133-135)

Crossrefs

Cf. A000203, A065764, A072379 (partial sums).

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^2, {n, 1, 50}] (* Vaclav Kotesovec, Feb 05 2019 *)
  • PARI
    a(n)=sigma(n)^2;  /* Joerg Arndt, Oct 07 2012 */

Formula

Dirichlet g.f.: zeta(s)*zeta(s-1)^2*zeta(s-2)/zeta(2*s-2), Re(s)>3. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 21 2002
From Vladeta Jovovic, Jul 30 2002: (Start)
Multiplicative with a(p^e) = ((p^(e+1)-1)/(p-1))^2.
a(n) = Sum_{d|n} n/d*sigma(d^2). (End)
Equals the Dirichlet convolution of A065764 by A000027: a(n) = sigma(n^2) * n. - R. J. Mathar, Apr 02 2011
Sum_{k>=1} 1/a(k) = A109693 = 1.3064565120389505680107494870912715497583907915664910373609699598615342645... - Vaclav Kotesovec, Sep 20 2020