A072946 Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(2,2), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.
1, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576, 3145728, 2097152
Offset: 0
Examples
nu(0)=1, nu(1)=2, nu(2)=6, nu(3)=16+4q, nu(4)=44+20q+12q^2, nu(5)=120+80q+64q^2+40q^3+8q^4, nu(6)=328+288q+280q^2+232q^3+168q^4+64q^5+24q^6. By listing the coefficients of the highest power in each nu(n) we get 1,2,6,4,12,8,24,...
Links
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (0, 2).
Programs
-
Mathematica
LinearRecurrence[{0,2},{1,2,6},50] (* Harvey P. Dale, Dec 31 2015 *)
Formula
For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2)=b^2+lambda and for n>=3, t(n)=lambda*T(n-2).
O.g.f.: (1+2*x+4*x^2)/(1-2*x^2). - R. J. Mathar, Dec 05 2007
Extensions
More terms from R. J. Mathar, Dec 05 2007
Comments