cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072946 Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(2,2), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.

Original entry on oeis.org

1, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576, 3145728, 2097152
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Instead of listing the coefficients of the highest power of q in each nu(n), if we listed the coefficients of the smallest power of q (i.e., constant terms), we get a weighted Fibonacci numbers described by f(0)=1, f(1)=1, for n>=2, f(n)=2f(n-1)+2f(n-2).

Examples

			nu(0)=1,
nu(1)=2,
nu(2)=6,
nu(3)=16+4q,
nu(4)=44+20q+12q^2,
nu(5)=120+80q+64q^2+40q^3+8q^4,
nu(6)=328+288q+280q^2+232q^3+168q^4+64q^5+24q^6.
By listing the coefficients of the highest power in each nu(n) we get 1,2,6,4,12,8,24,...
		

Crossrefs

Essentially the same as A162255 and A164073.
Cf. A002605.

Programs

  • Mathematica
    LinearRecurrence[{0,2},{1,2,6},50] (* Harvey P. Dale, Dec 31 2015 *)

Formula

For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2)=b^2+lambda and for n>=3, t(n)=lambda*T(n-2).
O.g.f.: (1+2*x+4*x^2)/(1-2*x^2). - R. J. Mathar, Dec 05 2007

Extensions

More terms from R. J. Mathar, Dec 05 2007