A072984 Least k such that prime(n) appears in the factorization of A001008(k) (the numerator of the k-th harmonic number).
2, 4, 6, 3, 12, 16, 18, 22, 13, 30, 17, 40, 13, 46, 22, 58, 10, 66, 70, 72, 78, 82, 88, 11, 100, 102, 106, 25, 112, 126, 130, 5, 138, 148, 150, 156, 162, 166, 71, 178, 180, 190, 192, 196, 38, 210, 222, 22, 228, 232, 238, 240, 250, 66, 262, 33, 58, 276, 280, 282
Offset: 2
Links
- T. D. Noe, Table of n, a(n) for n = 2..1000
- David W. Boyd, A p-adic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287-302. [WARNING: Table 2 contains miscalculations for p=19, 47, 59, ... - _Max Alekseyev_, Feb 10 2016]
- A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.
Programs
-
Mathematica
A072984[n_] := Module[{p, k, sum}, p = Prime[n]; k = 1; sum = 1/k; While[! Divisible[Numerator[sum], p], k++; sum += 1/k]; Return[k]]; Table[A072984[n], {n, 2, 61}] (* Robert Price, May 01 2019 *)
-
PARI
a(n)=if(n<0,0,s=1; while(numerator(sum(k=1,s,1/k))%prime(n)>0,s++); s)
Comments