A073002 Decimal expansion of -zeta'(2) (the first derivative of the zeta function at 2).
9, 3, 7, 5, 4, 8, 2, 5, 4, 3, 1, 5, 8, 4, 3, 7, 5, 3, 7, 0, 2, 5, 7, 4, 0, 9, 4, 5, 6, 7, 8, 6, 4, 9, 7, 7, 8, 9, 7, 8, 6, 0, 2, 8, 8, 6, 1, 4, 8, 2, 9, 9, 2, 5, 8, 8, 5, 4, 3, 3, 4, 8, 0, 3, 6, 0, 4, 4, 3, 8, 1, 1, 3, 1, 2, 7, 0, 7, 5, 2, 2, 7, 9, 3, 6, 8, 9, 4, 1, 5, 1, 4, 1, 1, 5, 1, 5, 1, 7, 4, 9, 3, 1, 1, 3
Offset: 0
Examples
Zeta'(2) = -0.93754825431584375370257409456786497789786028861482...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.18, p. 157.
- C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 359.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- D. Huylebrouck, Generalizing Wallis' formula, American Mathematical Monthly, to appear, 2015.
- Simon Plouffe, Zeta(1,2) the derivative of Zeta function at 2.
- J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Ill. J. Math. 6 (1) (1962) 64-94, Table IV
- J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function.
- Eric Weisstein's World of Mathematics, Glaisher-Kinkelin Constant.
Programs
-
Maple
Zeta(1,2); evalf(%, 120); # R. J. Mathar, Oct 10 2011
-
Mathematica
(* first do *) Needs["NumericalMath`NLimit`"], (* then *) RealDigits[ N[ ND[ Zeta[z], z, 2, WorkingPrecision -> 200, Scale -> 10^-20, Terms -> 20], 111]][[1]] (* Eric W. Weisstein, May 20 2004 *) (* from version 6 on *) RealDigits[-Zeta'[2], 10, 105] // First (* or *) RealDigits[-Pi^2/6*(EulerGamma - 12*Log[Glaisher] + Log[2*Pi]), 10, 105] // First (* Jean-François Alcover, Apr 11 2013 *)
-
PARI
-zeta'(2) \\ Charles R Greathouse IV, Mar 28 2012
Formula
Sum_{n >= 1} log(n) / n^2. - N. J. A. Sloane, Feb 19 2011
Pi^2(gamma + log(2Pi) - 12 log(A))/6, where A is the Glaisher-Kinkelin constant. - Charles R Greathouse IV, May 06 2013
Extensions
Definition corrected by N. J. A. Sloane, Feb 19 2011
Comments