cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073008 Decimal expansion of the Traveling Salesman constant.

Original entry on oeis.org

7, 1, 4, 7, 8, 2, 7, 0, 0, 7, 9, 1, 2, 9, 4, 2, 7, 2, 0, 1, 8, 9, 8, 4, 8, 7, 9, 6, 2, 1, 0, 8, 4, 0, 9, 6, 7, 3, 1, 3, 4, 5, 5, 9, 7, 0, 9, 4, 4, 3, 0, 3, 1, 9, 3, 9, 6, 4, 5, 7, 0, 0, 4, 1, 1, 5, 4, 6, 1, 1, 7, 7, 3, 8, 3, 3, 5, 8, 7, 9, 7, 0, 6, 7, 7, 0, 2, 1, 3, 4, 1, 3, 0, 9, 6, 2, 9, 4, 5, 3, 3, 5, 6, 1, 5
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

From Elijah Beregovsky, Jan 10 2020: (Start)
In 1959 J. Beardwood, J. H. Halton and J. M. Hammersley showed that the shortest tour through N random uniformly distributed points in a bounded plane region of area A approaches K*sqrt(N*A), where K is the Traveling Salesman constant, as N approaches infinity. They also proved that 5/8 <= K < 0.922.
In 2015 S. Steinerberger slightly improved both bounds.
In 1995 P. Moscato and N. G. Norman proved that a plane-filling curve called MNPeano is the shortest tour through the set of points defined by MNPeano and observed that the asymptotic expected length of this curve is given by (4/153)*(1+2*sqrt(2))*sqrt(51)*sqrt(N*A), which is very close to the empirical value of the traveling salesman constant.
(End)

Examples

			0.7147827007912942720189848796210840967313...
		

References

  • J. Beardwood, J. H. Halton and J. M. Hammersley, The shortest path through many points, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 55, No. 4, 1959, pp. 299-327.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.5, p. 498.

Formula

Conjectured to be equal to (4/153)*(1+2*sqrt(2))*sqrt(51).