A073008 Decimal expansion of the Traveling Salesman constant.
7, 1, 4, 7, 8, 2, 7, 0, 0, 7, 9, 1, 2, 9, 4, 2, 7, 2, 0, 1, 8, 9, 8, 4, 8, 7, 9, 6, 2, 1, 0, 8, 4, 0, 9, 6, 7, 3, 1, 3, 4, 5, 5, 9, 7, 0, 9, 4, 4, 3, 0, 3, 1, 9, 3, 9, 6, 4, 5, 7, 0, 0, 4, 1, 1, 5, 4, 6, 1, 1, 7, 7, 3, 8, 3, 3, 5, 8, 7, 9, 7, 0, 6, 7, 7, 0, 2, 1, 3, 4, 1, 3, 0, 9, 6, 2, 9, 4, 5, 3, 3, 5, 6, 1, 5
Offset: 0
Examples
0.7147827007912942720189848796210840967313...
References
- J. Beardwood, J. H. Halton and J. M. Hammersley, The shortest path through many points, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 55, No. 4, 1959, pp. 299-327.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.5, p. 498.
Links
- P. Moscato and M. G. Norman, An analysis of the performance of traveling salesman heuristics on infinite-size fractal instanced in the Euclidean plane.
- Simon Plouffe, Traveling Salesman Constant.
- J. M. Steele, Probabilistic and worst case analyses of classical problems of combinatorial optimization in Euclidean space, Mathematics of Operations Research, Vol. 15, No. 4 (Nov., 1990), pp. 749-770.
- Stefan Steinerberger, New bounds for the traveling salesman constant, arXiv:1311.6338 [math.PR], 2013-2014.
- Eric Weisstein's World of Mathematics, Traveling Salesman Constants.
Formula
Conjectured to be equal to (4/153)*(1+2*sqrt(2))*sqrt(51).
Comments