cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073039 First multiple of n in A025487.

Original entry on oeis.org

1, 2, 6, 4, 30, 6, 210, 8, 36, 30, 2310, 12, 30030, 210, 30, 16, 510510, 36, 9699690, 60, 210, 2310, 223092870, 24, 900, 30030, 216, 420, 6469693230, 30, 200560490130, 32, 2310, 510510, 210, 36, 7420738134810, 9699690, 30030, 120, 304250263527210
Offset: 1

Views

Author

Jeff Burch, Aug 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    prim[p_] := Product[Prime[i], {i, PrimePi[p]}]; a[n_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; LCM @@ ((prim /@ p)^e)]; Array[a, 50] (* Amiram Eldar, Dec 30 2020 *)

Formula

If n = 2^e_1 * 3^e_2 * ... * prime(k)^e_k, then a(n) = 2^max(e_1, e_2, ..., e_k) * 3^max(e_2, ..., e_k) * ... * prime(k-1)^max(e_{k-1}, e_k) * prime(k)^e_k = lcm_{i=1}^k prime(k)#^e_k. In particular, if p prime, a(p) = p# (primorial, A002110). When gcd(n,m) = 1, a(n*m) = lcm(a(n), a(m)). Also, a(n^k) = a(n)^k. - Franklin T. Adams-Watters, Oct 24 2006