cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073130 a(n) = gcd(p(n+1) - p(n), p(p(n+1)) - p(p(n))), where p(n) is the n-th prime.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 4, 2, 2, 6, 2, 2, 4, 6, 6, 2, 6, 2, 2, 2, 2, 6, 8, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 4, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 2, 4, 2, 2, 2, 6, 6, 6, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 6, 2, 2, 2, 6, 4, 6, 6, 2, 6, 4, 2, 2, 2, 2, 2, 2, 6, 2, 6, 4, 2, 2, 4, 4, 2, 4, 2, 2, 2, 12, 2, 6, 2, 2, 2, 6, 2
Offset: 1

Views

Author

Labos Elemer, Jul 16 2002

Keywords

Crossrefs

Programs

  • Magma
    [GCD(NthPrime(n+1) - NthPrime(n), NthPrime(NthPrime(n+1)) - NthPrime(NthPrime(n))): n in [1..120]]; // G. C. Greubel, Oct 20 2019
    
  • Maple
    seq(gcd(ithprime(n+1) - ithprime(n), ithprime(ithprime(n+1)) - ithprime(ithprime(n))), n=1..120); # G. C. Greubel, Oct 20 2019
  • Mathematica
    Table[GCD[Prime[n+1]-Prime[n], Prime[Prime[n+1]]-Prime[Prime[n]]], {n, 120}]
  • PARI
    vector(120, n, gcd(prime(n+1) - prime(n), prime(prime(n+1)) - prime(prime(n))) ) \\ G. C. Greubel, Oct 20 2019
    
  • Sage
    [gcd(nth_prime(n+1) - nth_prime(n), nth_prime(nth_prime(n+1)) - nth_prime(nth_prime(n))) for n in (1..120)] # G. C. Greubel, Oct 20 2019