A073149 Triangle of numbers arising in recursive computation of A002212.
1, 1, 2, 3, 4, 7, 10, 13, 16, 26, 36, 46, 55, 65, 101, 137, 173, 203, 233, 269, 406, 543, 680, 788, 888, 996, 1133, 1676, 2219, 2762, 3173, 3533, 3893, 4304, 4847, 7066, 9285, 11504, 13133, 14503, 15799, 17169, 18798, 21017, 30302, 39587, 48872, 55529
Offset: 0
Examples
T(5,3)=T(5,2)+T(3,0)T(5-2,0)=203+10*3=233. {1}, {1,2}, {3,4,7}, {10,13,16,26}, {36,46,55,65,101},...
Programs
-
PARI
T(n,k)=if(k<0 || n<0,0,if(n==0,1,if(k==0,T(n-1,0)+if(n>1,T(n-1,n-1)),T(n,k-1)+T(k,0)*T(n-k,0))))
Formula
G.f.: Sum_{n>=0, k>=0} T(n, k)*y^k*x^n = A(x)*A(xy)/(1-y) where A(x) is g.f. of A002212.
T(0, k)=T(1, 0)=1. T(n+1, 0)=T(n, 0)+T(n, n), n>0. T(n, k)=T(n, k-1)+T(k, 0)T(n-k, 0), k>0. T(n, k)=T(n, n), k>n.
Comments