A073165 Triangle T(n,k) read by rows: related to David G. Cantor's sigma function.
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 8, 1, 1, 5, 20, 35, 16, 1, 1, 6, 35, 112, 126, 32, 1, 1, 7, 56, 294, 672, 462, 64, 1, 1, 8, 84, 672, 2772, 4224, 1716, 128, 1, 1, 9, 120, 1386, 9504, 28314, 27456, 6435, 256, 1, 1, 10, 165, 2640, 28314, 151008, 306735, 183040, 24310, 512, 1
Offset: 0
Examples
Triangle rows: 1; 1, 1; 1, 2, 1; 1, 3, 4, 1; 1, 4, 10, 8, 1; 1, 5, 20, 35, 16, 1; 1, 6, 35, 112, 126, 32, 1; 1, 7, 56, 294, 672, 462, 64, 1; 1, 8, 84, 672, 2772, 4224, 1716, 128, 1;
Links
- Seiichi Manyama, Rows n = 0..139, flattened
- D. G. Cantor, On the analogue of the division polynomials for hyperelliptic curves, J. Reine Angew. Math. (Crelle's J.) 447 (1994), pp. 91-145.
- C. Krattenthaler, A. J. Guttmann and X. G. Viennot, Vicious walkers, friendly walkers and Young tableaux, II: with a wall, arXiv:cond-mat/0006367 [cond-mat.stat-mech], 2000.
Crossrefs
Programs
-
Mathematica
t[n_, k_] := Product[ (n-k+i+j-1) / (i+j-1), {j, 1, k}, {i, 1, j}]; Flatten[ Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, May 23 2012, after PARI *)
-
PARI
{T(n, k) = if( k<0 || k>n, 0, prod( i=1, (k+1)\2, binomial(n + 2*i - 1 - k%2, 4*i - 1 - k%2*2)) / prod( i=0, (k-1)\2, binomial(2*k - 2*i - 1, 2*i)))}
-
PARI
{T(n, k) = if( k<0 || n<0, 0, prod( j=1, k, prod( i=1, j, (n - k + i + j - 1) / (i + j - 1) )))} /* Michael Somos, Oct 16 2006 */
Formula
T(n, k) * T(n-2, k-1) - 2 * T(n-1, k-1) * T(n-1, k) + T(n, k-1) * T(n-2, k) = 0.
T(n+k, k) = Product_{1<=i<=j<=k} (n+i+j-1)/(i+j-1). - Ralf Stephan, Mar 02 2005
Extensions
Edited by Ralf Stephan, Mar 02 2005
Comments