cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073165 Triangle T(n,k) read by rows: related to David G. Cantor's sigma function.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 8, 1, 1, 5, 20, 35, 16, 1, 1, 6, 35, 112, 126, 32, 1, 1, 7, 56, 294, 672, 462, 64, 1, 1, 8, 84, 672, 2772, 4224, 1716, 128, 1, 1, 9, 120, 1386, 9504, 28314, 27456, 6435, 256, 1, 1, 10, 165, 2640, 28314, 151008, 306735, 183040, 24310, 512, 1
Offset: 0

Views

Author

Michael Somos, Jul 24 2002

Keywords

Comments

Square array T(n+k,k) read by antidiagonals: number of stars of length k with n branches.
Row n of T(n+k,k) has g.f. (floor(n/2)+1)F(floor(n/2))(1,3/2,5/2,...,(2*floor(n/2)+1)/2;n,n-1,...,n-floor(n/2)+1;2^n*x) (conjecture). [Paul Barry, Jan 23 2009]

Examples

			Triangle rows:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  4,   1;
  1, 4, 10,   8,    1;
  1, 5, 20,  35,   16,    1;
  1, 6, 35, 112,  126,   32,    1;
  1, 7, 56, 294,  672,  462,   64,   1;
  1, 8, 84, 672, 2772, 4224, 1716, 128, 1;
		

Crossrefs

Square array has main diagonal A049505, columns include A001700, A003645, A000356.
Cf. A133112.

Programs

  • Mathematica
    t[n_, k_] := Product[ (n-k+i+j-1) / (i+j-1), {j, 1, k}, {i, 1, j}]; Flatten[ Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, May 23 2012, after PARI *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, prod( i=1, (k+1)\2, binomial(n + 2*i - 1 - k%2, 4*i - 1 - k%2*2)) / prod( i=0, (k-1)\2, binomial(2*k - 2*i - 1, 2*i)))}
    
  • PARI
    {T(n, k) = if( k<0 || n<0, 0, prod( j=1, k, prod( i=1, j, (n - k + i + j - 1) / (i + j - 1) )))} /* Michael Somos, Oct 16 2006 */

Formula

T(n, k) * T(n-2, k-1) - 2 * T(n-1, k-1) * T(n-1, k) + T(n, k-1) * T(n-2, k) = 0.
T(n+k, k) = Product_{1<=i<=j<=k} (n+i+j-1)/(i+j-1). - Ralf Stephan, Mar 02 2005

Extensions

Edited by Ralf Stephan, Mar 02 2005