cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073211 Sum of two powers of 11.

Original entry on oeis.org

2, 12, 22, 122, 132, 242, 1332, 1342, 1452, 2662, 14642, 14652, 14762, 15972, 29282, 161052, 161062, 161172, 162382, 175692, 322102, 1771562, 1771572, 1771682, 1772892, 1786202, 1932612, 3543122, 19487172, 19487182, 19487292, 19488502, 19501812, 19648222, 21258732, 38974342
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 11^2 + 11^0 = 122.
Table T(n,m) begins:
      2;
     12,    22;
    122,   132,   242;
   1332,  1342,  1452,  2662;
  14642, 14652, 14762, 15972, 29282;
  ...
		

Crossrefs

Cf. A001020 (powers of 11).
Equals twice A073219.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073214 (19), A073215 (23).

Programs

  • Mathematica
    t = 11^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
  • Python
    from math import isqrt
    def A073211(n): return 11**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+11**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 11^n + 11^m, n = 0, 1, 2, 3, ..., m = 0, 1, 2, 3, ... n.
Bivariate g.f.: (2 - 12*x)/((1 - x)*(1 - 11*x)*(1 - 11*x*y)). - J. Douglas Morrison, Jul 26 2021