cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073215 Sum of two powers of 23.

Original entry on oeis.org

2, 24, 46, 530, 552, 1058, 12168, 12190, 12696, 24334, 279842, 279864, 280370, 292008, 559682, 6436344, 6436366, 6436872, 6448510, 6716184, 12872686, 148035890, 148035912, 148036418, 148048056, 148315730, 154472232, 296071778
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 23^2 + 23^0 = 530.
Table begins:
       2;
      24,     46;
     530,    552,   1058;
   12168,  12190,  12696,  24334;
  279842, 279864, 280370, 292008, 559682;
  ...
		

Crossrefs

Cf. A009967.
Equals twice A072822.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073214 (19).

Programs

  • Mathematica
    With[{nn=30},Take[Union[Total/@Tuples[23^Range[0,nn],2]],nn]] (* Harvey P. Dale, Oct 16 2017 *)
  • Python
    from math import isqrt
    def A073215(n): return 23**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+23**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n, m) = 23^n + 23^m, for n >= 0 and m in [0..n].
Bivariate g.f.: (2 - 24*x) / ((1 - x) * (1 - 23*x) * (1 - 23*x*y)). - J. Douglas Morrison, Jul 29 2021