A073243 Decimal expansion of exp(-LambertW(log(Pi))), solution to x = 1/Pi^x.
5, 3, 9, 3, 4, 3, 4, 9, 8, 8, 6, 2, 3, 0, 1, 2, 0, 8, 0, 6, 0, 7, 9, 5, 6, 8, 4, 4, 5, 5, 5, 9, 8, 4, 2, 0, 9, 8, 6, 4, 5, 5, 9, 7, 3, 2, 9, 4, 8, 4, 2, 6, 1, 1, 9, 4, 8, 8, 1, 5, 0, 1, 4, 8, 7, 0, 4, 6, 2, 7, 5, 4, 0, 1, 7, 4, 9, 0, 4, 5, 5, 5, 2, 8, 4, 1, 5, 2, 4, 2, 9, 3, 6, 8, 1, 7, 6, 7, 7, 3, 5, 4, 0, 2
Offset: 0
Examples
0.53934349886230120806079568445...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..1999
- J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; see the Appendix, arXiv:1108.6096.
- Eric Weisstein's World of Mathematics, Power Tower
Crossrefs
Programs
-
Mathematica
y /. FindRoot[y^(1/y) == 1/Pi, {y, 1}, WorkingPrecision -> 100] (* Jonathan Sondow, Aug 27 2011 *) First[RealDigits[Exp[-ProductLog[Log[Pi]]], 10, 104]] (* Vladimir Reshetnikov, Nov 01 2011 *)
-
PARI
/* The program below was run with precision set to 1000 digits */ /* n is the number of iterated exponentiations performed. */ /* (n turns out to be 954 with 1E-200 specified here) */ n=0; s=1/Pi; t=1; while(abs(t-s)>1E-200, t=s; s=(1/Pi)^s; n++); print(n,",",s)
-
PARI
solve(x=0,1,x-1/Pi^x) \\ M. F. Hasler, Nov 01 2011
Formula
x = LambertW(log(Pi))/log(Pi), solution to Pi^x=1/x. - M. F. Hasler, Nov 01 2011
Comments