A073247 Squarefree numbers k such that k-1 and k+1 are not squarefree.
17, 19, 26, 51, 53, 55, 89, 91, 97, 127, 149, 151, 161, 163, 170, 197, 199, 233, 235, 241, 249, 251, 269, 271, 293, 295, 305, 307, 337, 339, 341, 349, 362, 377, 379, 413, 415, 449, 451, 485, 487, 489, 491, 521, 523, 530, 551, 557, 559, 577, 579, 593, 595
Offset: 1
Keywords
Links
- Christopher E. Thompson, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
sf:= select(numtheory:-issqrfree,[$1..1000]): map(t -> `if`(sf[t-1]=sf[t]-1 or sf[t+1]=sf[t]+1,NULL,sf[t]), [$2..nops(sf)-1]); # Robert Israel, Feb 01 2016
-
Mathematica
Reap[For[n = 0, n <= 1000, n++, If[SquareFreeQ[n] && !SquareFreeQ[n-1] && !SquareFreeQ[n+1], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 26 2019 *)
-
PARI
is(n)=!issquarefree(n-1) && issquarefree(n) && !issquarefree(n+1) \\ Charles R Greathouse IV, Nov 05 2017
-
PARI
list(lim)=my(v=List(),l1,l2); forfactored(k=9,lim\1+1, if(!issquarefree(k) && !issquarefree(l2) && issquarefree(l1), listput(v,l1[1])); l2=l1; l1=k); Vec(v) \\ Charles R Greathouse IV, Nov 27 2024
Comments