cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073253 Table of expansion of Product (1+(xy)^n/y)(1+(xy)^n/x), n>0 by antidiagonals.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 2, 5, 2, 0, 0, 0, 0, 0, 0, 1, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 3, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 7, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 11, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 11, 11, 2, 0
Offset: 0

Views

Author

Michael Somos, Jul 23 2002

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Combinatorial interpretation is number of partitions of Gaussian integer n+ki into distinct parts of form a+(a-1)i and (b-1)+bi, a,b>0.
Jacobi triple product identity implies the g.f. equals the Ramanujan theta function divided by Product (1-(xy)^m), m>0.

Examples

			{1}; {1, 1}; {0, 1 ,0}; {0, 1, 1, 0}; {0, 1, 2, 1, 0}; {0, 0, 2, 2, 0, 0}; {0, 0, 1, 3, 1, 0, 0}; ...
		

References

  • J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge Univ. Press, 1992. p. 141.

Crossrefs

A073252 gives antidiagonal sums.

Programs

  • PARI
    {T(n, k) = if( n<0 || k<0, 0, polcoeff( polcoeff( prod( i=1, max(n, k), (1 + x^i * y^(i-1)) * (1 + x^(i-1) *y^i), 1 + x * O(x^n) + y * O(y^k)), n), k))}