A073268 Number of plane binary trees whose right (or respectively: left) subtree is a unique "complete" tree of (2^m)-1 nodes with all the leaf-nodes at the same depth m and the left (or respectively: right) subtree is any plane binary tree of size n - 2^m + 1.
1, 1, 2, 3, 8, 20, 58, 179, 576, 1902, 6426, 22092, 77026, 271702, 967840, 3476555, 12578728, 45800278, 167693698, 617037126, 2280467586, 8461771342, 31510700712, 117725789124, 441141656810, 1657559677646, 6243810767912
Offset: 0
Keywords
Crossrefs
Occurs for first time in A073202 as row 41.
Programs
-
Maple
A073268 := proc(n) local i; if(0=n) then 1 else add(Cat(n-2^i),i=0..floor(evalf(log[2](n)))); fi; end; Cat := n -> binomial(2*n,n)/(n+1);
-
Mathematica
a[0] = 1; a[n_] := Sum[CatalanNumber[n - 2^i], {i, 0, Log[2, n]}]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 05 2016 *)
-
PARI
N=66; x='x+O('x^N); lg=ceil(log(N)/log(2)); C(x)=(1-sqrt(1-4*x))/(2*x); gf=1+sum(k=0, lg, x^(2^k)*C(x) ); Vec(gf) /* Joerg Arndt, Jul 02 2012 */
Formula
a(0)=1, a(n) = Sum_{i=0..floor(log_2(n))} Cat(n-(2^i))
G.f.: 1 + Sum_{k>=0} x^(2^k)*C(x) where C(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108). [Joerg Arndt, Jul 02 2012]
Comments