A073278 Triangle read by rows. The triangle is constructed from the coefficients of the n-th derivative of the normal probability distribution function.
1, -1, 0, 1, 0, -1, -1, 0, 3, 0, 1, 0, -6, 0, 3, -1, 0, 10, 0, -15, 0, 1, 0, -15, 0, 45, 0, -15, -1, 0, 21, 0, -105, 0, 105, 0, 1, 0, -28, 0, 210, 0, -420, 0, 105, -1, 0, 36, 0, -378, 0, 1260, 0, -945, 0, 1, 0, -45, 0, 630, 0, -3150, 0, 4725, 0, -945, -1, 0, 55, 0, -990, 0, 6930, 0, -17325, 0, 10395, 0
Offset: 0
Examples
f(x) = 1/Sqrt(2*Pi) * e^(-x^2 /2). The polynomial involved in the seventh derivative of the f(x)/dx is (-x^7 + 21x^5 - 105x^3 + 105x). Therefore the seventh antidiagonal reads the coefficients as -1, 0, 21, 0, -105, 0, 105. Triangle T(n, k) starts: [0] 1; [1] -1, 0; [2] 1, 0, -1; [3] -1, 0, 3, 0; [4] 1, 0, -6, 0, 3; [5] -1, 0, 10, 0, -15, 0; [6] 1, 0, -15, 0, 45, 0, -15; [7] -1, 0, 21, 0, -105, 0, 105, 0; [8] 1, 0, -28, 0, 210, 0, -420, 0, 105; [9] -1, 0, 36, 0, -378, 0, 1260, 0, -945, 0;
References
- Samuel M. Selby, Editor-in-Chief, CRC Standard Mathematical Tables, 21st Edition, 1973, pp. 582.
Crossrefs
Cf. A000085.
Programs
-
Mathematica
y = E^(-x^2/2); Flatten[ Table[ Reverse[ CoefficientList[ Dt[y, {x, n}]/y, x]], {n, 0, 11} ]]
Formula
a(n) is the coefficient list of the x's of the n-th d(e^(-x^2 /2)/dx.
Sum_{k=0..n} |T(n, k)| = A000085(n). - Peter Luschny, Jan 10 2023
Comments