A073357 Binomial transform of tribonacci numbers.
0, 1, 3, 8, 22, 62, 176, 500, 1420, 4032, 11448, 32504, 92288, 262032, 743984, 2112384, 5997664, 17029088, 48350464, 137280832, 389779648, 1106696192, 3142227840, 8921685888
Offset: 0
References
- Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Index entries for linear recurrences with constant coefficients, signature (4, -4, 2).
Programs
-
Mathematica
h[n_] := h[n]=4*h[n-1]-4*h[n-2]+2*h[n-3]; h[0]=0; h[1]=1; h[2]=3 LinearRecurrence[{4,-4,2},{0,1,3},30] (* Harvey P. Dale, Nov 13 2011 *)
Formula
a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3), a(0)=0, a(1)=1, a(2)=3.
Generating function A(x)=(x-x^2)/(1-4x+4x^2-2x^3).
Comments