A073359 Nested floor product of n and fractions (2k+2)/(2k+1) for all k>=0, divided by 2.
1, 3, 6, 9, 13, 19, 24, 31, 39, 45, 54, 66, 73, 90, 103, 111, 126, 144, 153, 174, 193, 199, 229, 240, 264, 283, 306, 324, 354, 381, 403, 421, 463, 474, 504, 546, 555, 594, 630, 660, 679, 735, 741, 789, 846, 859, 903, 949, 966, 1011
Offset: 1
Examples
a(3) = 6 since (1/2)[[[[[[3(2/1)](4/3)](6/5)](8/7)](10/9)](12/11)] = (1/2)[[[[[6(4/3)](6/5)](8/7)](10/9)](12/11)] = (1/2)[[[[8(6/5)](8/7)](10/9)](12/11)] = (1/2)[[[9(8/7)](10/9)](12/11)] = (1/2)[[10(10/9)](12/11)] = (1/2)[11(12/11)] = 6. [Minor correction by _M. F. Hasler_, Nov 23 2016]
Links
- D. Wilson et al., Interesting sequence, SeqFan list, Nov. 2016
Crossrefs
Cf. A000960.
Programs
-
PARI
apply( A073359(n)=forstep(k=2,9e9,2,n==(n=floor(n*k/(k-1)))&&return(n\2)), [1..100]) \\ M. F. Hasler, Nov 23 2016
Formula
By definition, a(n)=(1/2)[...[[[[n(2/1)](4/3)](6/5)]...(2k+2)/(2k+1)]..., where [x] = floor of x; this infinite nested floor product will eventually level-off at a(n).
a(n) = (A000960(n+1)-1)/2, cf. link to posts on the SeqFan list. - M. F. Hasler, Nov 23 2016 [This may only be a conjecture? - N. J. A. Sloane, Nov 23 2016]