cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073373 Third convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 4, 18, 60, 195, 576, 1644, 4488, 11925, 30860, 78278, 195012, 478599, 1159080, 2774880, 6575280, 15439065, 35955540, 83118970, 190862860, 435601611, 988620624, 2232236628, 5016441240, 11224087965
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Crossrefs

Fourth (m=3) column of triangle A073370.

Programs

  • Magma
    [(1/4374)*(2^(n+4)*(226 +267*n +90*n^2 +9*n^3) +(-1)^n*(758 +555*n +126*n^2 +9*n^3)): n in [0..40]]; // G. C. Greubel, Sep 29 2022
    
  • Mathematica
    Table[(1/4374)*(2^(n+4)*(226 +267*n +90*n^2 +9*n^3) +(-1)^n*(758 +555*n +126*n^2 +9*n^3)), {n,0,40}] (* G. C. Greubel, Sep 29 2022 *)
  • SageMath
    def A073373(n): return (1/4374)*(2^(n+4)*(226+267*n+90*n^2+9*n^3) +(-1)^n*(758 +555*n+126*n^2+9*n^3))
    [A073373(n) for n in range(40)] # G. C. Greubel, Sep 29 2022

Formula

a(n) = Sum_{k=0..n} b(k) * c(n-k), with b(k) = A001045(k+1) and c(k) = A073372(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+3, 3) * binomial(n-k, k) * 2^k.
a(n) = ((350+177*n+21*n^2)*(n+1)*U(n+1) + 2*(277+132*n+15*n^2)*(n+2)*U(n))/ (2*9^3) with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1-(1+2*x)*x)^4 = 1/ ( (1+x)^4*(1-2*x)^4 ).
E.g.f.: (1/4374)*(32*(113 + 366*x + 234*x^2 + 36*x^3)*exp(2*x) - (-758 + 690*x - 153*x^2 + 9*x^3)*exp(-x)). - G. C. Greubel, Sep 29 2022