cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073378 Eighth convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 9, 63, 345, 1665, 7227, 29073, 109791, 394020, 1354210, 4486482, 14397318, 44932446, 136817370, 407566350, 1190446866, 3415935699, 9645169743, 26836557825, 73670997015, 199751003991, 535449185469
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

For a(n) in terms of U(n+1) and U(n) with U(n) = A001045(n+1) see A073370 and the row polynomials of triangles A073399 and A073400.

Crossrefs

Ninth (m=8) column of triangle A073370.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x)*(1-2*x))^9 )); // G. C. Greubel, Oct 01 2022
    
  • Mathematica
    CoefficientList[Series[1/((1+x)*(1-2*x))^9, {x,0,40}], x] (* G. C. Greubel, Oct 01 2022 *)
  • SageMath
    def A073378_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1+x)*(1-2*x))^9 ).list()
    A073378_list(40) # G. C. Greubel, Oct 01 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073377(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+8, 8) * binomial(n-k, k) * 2^k.
G.f.: 1/(1-(1+2*x)*x)^9 = 1/((1+x)*(1-2*x))^9.