cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073398 Ninth convolution of A002605(n) (generalized (2,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 20, 240, 2200, 16940, 115104, 711040, 4072640, 21930480, 112157760, 549010176, 2587777920, 11802273600, 52287866880, 225756241920, 952486588416, 3935984616960, 15961485957120, 63628396339200, 249702113464320, 965924035135488, 3687247950397440
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

For a(n) in terms of U(n+1) and U(n), with U(n) = A002605(n), see A073387 and the row polynomials of triangles A073405 and A073406.

Crossrefs

Tenth (m=9) column of triangle A073387.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^10 )); // G. C. Greubel, Oct 06 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-2*x-2*x^2)^10, {x,0,30}], x] (* G. C. Greubel, Oct 06 2022 *)
  • SageMath
    def A073398_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-2*x-2*x^2)^10 ).list()
    A073398_list(30) # G. C. Greubel, Oct 06 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A002605(k) and c(k) = A073397(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+9, 9)*binomial(n-k, k)*2^(n-k).
G.f.: 1/(1-2*x*(1+x))^10.