A073402 Coefficient triangle of polynomials (rising powers) related to convolutions of A001045(n+1), n >= 0, (generalized (1,2)-Fibonacci). Companion triangle is A073401.
2, 33, 9, 831, 396, 45, 28236, 18297, 3744, 243, 1210140, 968679, 273483, 32481, 1377, 62686440, 58920534, 20681811, 3418767, 268029, 8019, 3810867480, 4075425738, 1683064737, 347584284, 38186478, 2130138, 47385
Offset: 0
Examples
k=2: U2(n)=((30+9*n)*(n+1)*U0(n+1)+(33+9*n)*(n+2)*2*U0(n))/(2*9^2), cf. A073372. 1; 33,9; 831,396,45; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
Links
- Sean A. Irvine, Table of n, a(n) for n = 0..989
- Wolfdieter Lang, First 7 rows.
Formula
Recursion for row polynomials defined in the comments: p(k, n)= (n+2)*p(k-1, n+1)+4*(n+2*(k+1))*p(k-1, n)+2*(n+3)*q(k-1, n+1); q(k, n)= (n+1)*p(k-1, n+1)+4*(n+2*(k+1))*q(k-1, n), k >= 1. [Corrected by Sean A. Irvine, Nov 25 2024]
Comments