cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073408 Let cophi_m(x) denotes the cototient function applied m times to x (cophi(x)=x-phi(x)). Sequence gives the minimum number of iterations m such that cophi_m(n) divides n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 3, 2, 1, 1, 4, 1, 3, 2, 4, 1, 2, 1, 4, 1, 3, 1, 5, 1, 1, 2, 5, 2, 4, 1, 5, 3, 3, 1, 6, 1, 4, 2, 5, 1, 2, 1, 6, 2, 4, 1, 6, 3, 3, 3, 6, 1, 5, 1, 5, 2, 1, 2, 6, 1, 5, 3, 6, 1, 4, 1, 6, 3, 5, 2, 7, 1, 3, 1, 7, 1, 6, 4, 6, 2, 4, 1, 7, 2, 5, 3, 6, 2, 2, 1, 6, 4, 6, 1, 7, 1, 4, 2, 7
Offset: 2

Views

Author

Benoit Cloitre, Aug 23 2002

Keywords

Examples

			cophi(10) -> 6, cophi(6) -> 4, cophi(4) -> 2 and 2 divides 10. Hence 3 iterations are needed and a(10) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Length@ NestWhileList[# - EulerPhi@ # &, n, Or[# == n, ! Divisible[n, #]] &, 1, 12] - 1, {n, 2, 106}] (* Michael De Vlieger, Dec 22 2017 *)
  • PARI
    a(n)=if(n<0,0,c=1; s=n; while(n%(s-eulerphi(s))>0,s=s-eulerphi(s); c++); c)

Formula

It seems that sum(k=1, n, a(k)) is asymptotic to C*n*log(n) with C < 1.