A073414 Numerator of the n-th convergent to Sum_{k>=0} 1/2^(2^k).
0, 1, 4, 9, 40, 169, 1054, 4385, 9824, 43681, 271910, 587501, 2621914, 16318985, 67897854, 287910401, 643718656, 2862785025, 17820428806, 38503642637, 171834999354, 725843640053, 4526896839672, 18833430998741, 42193758837154
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..1650
Programs
-
Maple
a007400:= proc(n) option remember; local n8, n16; n8:= n mod 8; if n8 = 0 or n8 = 3 then return 2 elif n8 = 4 or n8 = 7 then return 4 elif n8 = 1 then return procname((n+1)/2) elif n8 = 2 then return procname((n+2)/2) fi; n16:= n mod 16; if n16 = 5 or n16 = 14 then return 4 elif n16 = 6 or n16 = 13 then return 6 fi end proc: a007400(0):= 0: a007400(1):= 1: a007400(2):= 4: A[1]:= 0: A[2]:= 1: for n from 3 to 100 do A[n]:= A[n-1]*a007400(n-1)+A[n-2]; od: seq(A[n],n=1..100); # Robert Israel, Jun 14 2016
-
Mathematica
(* b is a007400 *) b[n_] := b[n] = Module[{n8, n16}, n8 = Mod[n, 8]; Which[n8 == 0 || n8 == 3, Return[2], n8 == 4 || n8 == 7, Return[4], n8 == 1, Return[b[(n+1)/2]], n8 == 2, Return[b[(n+2)/2]]]; n16 = Mod[n, 16]; Which[n16 == 5 || n16 == 14, Return[4], n16 == 6 || n16 == 13, Return[6]]]; b[0] = 0; b[1] = 1; b[2] = 4; a[1] = 0; a[2] = 1; a[n_] := a[n] = a[n-1] b[n-1] + a[n-2]; Array[a, 100] (* Jean-François Alcover, Jun 10 2020, after Robert Israel *)
-
PARI
a(n)=component(component(contfracpnqn(contfrac(sum(k=0,20,1/2^(2^k)),n)),1),1)
Formula
a(n) = a(n-1) A007400(n-1) + a(n-2). - Robert Israel, Jun 14 2016