cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073490 Number of prime gaps in factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A137723(n) is the smallest number of the first occurring set of exactly n consecutive numbers with at least one prime gap in their factorization: a(A137723(n)+k)>0 for 0<=kA137723(n)-1)=a(A137723(n)+n)=0. - Reinhard Zumkeller, Feb 09 2008

Examples

			84 = 2*2*3*7 with one gap between 3 and 7, therefore a(84) = 1;
110 = 2*5*11 with two gaps: between 2 and 5 and between 5 and 11, therefore a(110) = 2.
		

Crossrefs

Programs

  • Haskell
    a073490 1 = 0
    a073490 n = length $ filter (> 1) $ zipWith (-) (tail ips) ips
       where ips = map a049084 $ a027748_row n
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Maple
    A073490 := proc(n)
        local a,plist ;
        plist := sort(convert(numtheory[factorset](n),list)) ;
        a := 0 ;
        for i from 2 to nops(plist) do
            if op(i,plist) <> nextprime(op(i-1,plist)) then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc:
    seq(A073490(n),n=1..110) ; # R. J. Mathar, Oct 27 2019
  • Mathematica
    gaps[n_Integer/;n>0]:=If[n===1, 0, Complement[Prime[PrimePi[Rest[ # ]]-1], # ]&[First/@FactorInteger[n]]]; Table[Length[gaps[n]], {n, 1, 120}] (* Wouter Meeussen, Oct 30 2004 *)
    pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Table[Total[pa @@@ Partition[First /@ FactorInteger[n], 2, 1]], {n, 120}] (* Jayanta Basu, Jul 01 2013 *)
  • Python
    from sympy import primefactors, nextprime
    def a(n):
        pf = primefactors(n)
        return sum(p2 != nextprime(p1) for p1, p2 in zip(pf[:-1], pf[1:]))
    print([a(n) for n in range(1, 121)]) # Michael S. Branicky, Oct 14 2021

Formula

a(n) = A073484(A007947(n)).
a(A000040(n))=0; a(A000961(n))=0; a(A006094(n))=0; a(A002110(n))=0; a(A073485(n))=0.
a(A073486(n))>0; a(A073487(n)) = 1; a(A073488(n))=2; a(A073489(n))=3.
a(n)=0 iff A073483(n) = 1.
a(A097889(n)) = 0. - Reinhard Zumkeller, Nov 20 2004
0 <= a(m*n) <= a(m) + a(n) + 1. A137794(n) = 0^a(n). - Reinhard Zumkeller, Feb 11 2008

Extensions

More terms from Franklin T. Adams-Watters, May 19 2006