A073493 Numbers having exactly one prime gap in their factorization.
10, 14, 20, 21, 22, 26, 28, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102, 104, 106, 111, 112, 114, 115, 116, 117, 118, 119, 122, 123, 124, 126, 129
Offset: 1
Keywords
Examples
200 is a term, as 200 = 2*2*2*5*5 with one gap between 2 and 5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a073493 n = a073493_list !! (n-1) a073493_list = filter ((== 1) . a073490) [1..] -- Reinhard Zumkeller, Dec 20 2013
-
Mathematica
pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Select[Range[130], Total[pa @@@ Partition[First /@ FactorInteger[#], 2, 1]] == 1 &] (* Jayanta Basu, Jul 01 2013 *)
-
Python
from sympy import primefactors, nextprime def ok(n): pf = primefactors(n) return sum(p2 != nextprime(p1) for p1, p2 in zip(pf[:-1], pf[1:])) == 1 print(list(filter(ok, range(1, 130)))) # Michael S. Branicky, Oct 14 2021
Formula
A073490(a(n)) = 1.