A073496 Expansion of (3 + 2*x + 3*x^2)/(1 + x + 3*x^2 - x^3).
3, -1, -5, 11, 3, -41, 43, 83, -253, 47, 795, -1189, -1149, 5511, -3253, -14429, 29699, 10335, -113861, 112555, 239363, -690889, 85355, 2226675, -3173629, -3421041, 15168603, -8079109, -40847741, 80253671, 34210443, -315819197, 293441539, 688226495, -1884370309, 113132363, 6228205059
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (-1,-3,1)
Crossrefs
Bisection of A073145.
Programs
-
Mathematica
CoefficientList[Series[(3 + 2*x + 3*x^2)/(1 + x + 3*x^2 - x^3), {x, 0, 50}], x] LinearRecurrence[{-1,-3,1},{3,-1,-5},40] (* Harvey P. Dale, Aug 22 2018 *)
Formula
G.f.: (3 + 2*x + 3*x^2)/(1 + x + 3*x^2 - x^3).
a(2n)=-a(2n-2)-3a(2n-4)+a(2n-6), a(0)=3, a(2)=-1, a(4)=-5.
Recurrence: a(n) = a(n-3) - 3a(n-2) - a(n-1), starting 3,-1,-5.
Comments