cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073617 Consider Pascal's triangle A007318; a(n) = product of terms at +45 degrees slope with the horizontal.

Original entry on oeis.org

1, 1, 1, 2, 3, 12, 30, 240, 1050, 16800, 132300, 4233600, 61122600, 3911846400, 104886381600, 13425456844800, 674943865596000, 172785629592576000, 16407885372638760000, 8400837310791045120000, 1515727634953623371280000, 1552105098192510332190720000
Offset: 0

Views

Author

Amarnath Murthy, Aug 07 2002

Keywords

Comments

The sum of the terms pertaining to the above product is the (n+1)-th Fibonacci number: 1 + 5 + 6 + 1 = 13.
n divides A073617(n+1) for n>=1; see the Mathematica section. [Clark Kimberling, Feb 29 2012]

Examples

			For n=6 the diagonal is 1,5,6,1 and product of the terms = 30 hence a(6) = 30.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(binomial(n-i, i), i=0..floor(n/2)):
    seq(a(n), n=0..21);  # Alois P. Heinz, Nov 27 2023
  • Mathematica
    p[n_] := Product[Binomial[n + 1 - k, k], {k, 1, Floor[(n + 1)/2]}]
    Table[p[n], {n, 1, 20}]   (* A073617(n+1) *)
    Table[p[n]/n, {n, 1, 20}] (* A208649 *)
    (* Clark Kimberling, Feb 29 2012 *)
    (* Second program *)
    Join[{1}, Table[If[EvenQ[n], 2^(3/2 - n/4) * Sqrt[BarnesG[n]] * Gamma[n] / (n*BarnesG[n/2]^2 * Gamma[n/2]^(7/2)), Glaisher^3 * 2^((-10 + 3*n + 6*n^2)/12) * BarnesG[n/2]^2 * Gamma[n/2]^(5/2) / (E^(1/4) * Pi^(1/4 + n/2) * Sqrt[BarnesG[n]] * Gamma[n])], {n, 1, 25}]] (* Vaclav Kotesovec, Jun 10 2025 *)

Formula

a(n) = Product_{k=0..floor(n/2)} binomial(n-k,k).
a(2n+1)/a(2n-1) = binomial(2n,n); a(2n)/a(2n-2) = (1/2)*binomial(2n,n); (a(2n+1)*a(2n-2))/(a(2n)*a(2n-1)) = 2. - John Molokach, Sep 09 2013
a(n) ~ A^(3/2) * 2^(n*(n+1)/4 - 1/6 + (-1)^n/4) * exp(n/4 - 1/8) / (n^((n+1)/4 + (-1)^n/8) * Pi^(n/4 + 3/8 + (-1)^n/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jun 10 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 22 2003