A073663 Total number of branches of length k (k>=1) in all ordered trees with n+k edges (it is independent of k).
1, 2, 8, 30, 113, 428, 1629, 6226, 23881, 91884, 354484, 1370812, 5312058, 20622904, 80196055, 312319530, 1217938665, 4755296460, 18586968840, 72723903780, 284804791230, 1116315593640, 4378929921210, 17189573707956
Offset: 0
Keywords
Examples
a(2)=8 because for n=2 and k=1 (for example), the five ordered trees with n+k=3 edges have altogether 0+3+1+1+3=8 branches of length 1.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. Riordan, Enumeration of plane trees by branches and endpoints, J. Comb. Theory (A) 19, 1975, 214-222.
Crossrefs
First differences of A076540.
Programs
-
GAP
Concatenation([1], List([1..30], n-> 3*(3*n^3+2*n^2+n-2)* Binomial(2*n, n)/(2*(n+1)*(n+2)*(2*n-1)))); # G. C. Greubel, Jul 22 2019
-
Magma
[1] cat [3*(3*n^3+2*n^2+n-2)*Catalan(n)/(2*(n+2)*(2*n-1)): n in [1..30]]; // G. C. Greubel, Jul 22 2019
-
Mathematica
Table[If[n==0, 1, 3*(3*n^3+2*n^2+n-2)*CatalanNumber[n]/(2*(n+2)*(2*n - 1))], {n,0,30}] (* G. C. Greubel, Jul 22 2019 *)
-
PARI
vector(30, n, n--; if(n==0, 1, 3*(3*n^3+2*n^2+n-2)*binomial(2*n, n)/(2*(n+1)*(n+2)*(2*n-1)))) \\ G. C. Greubel, Jul 22 2019
-
Sage
[1]+[3*(3*n^3+2*n^2+n-2)*catalan_number(n)/(2*(n+2)*(2*n-1)) for n in (1..30)] # G. C. Greubel, Jul 22 2019
Formula
a(n) = binomial(2n+2, n) - 2*binomial(2n, n-1) + binomial(2n-2, n-2) (n > 0).
a(n) = 3*(3*n^3 + 2*n^2 + n - 2)*binomial(2*n, n)/(2*(n+1)*(n+2)*(2*n-1)) (n > 0).
G.f.: (1-z)^2*C^2/sqrt(1-4z), where C = (1-sqrt(1-4z))/(2z) is the Catalan function.
D-finite with recurrence (n+2)*a(n) +(-7*n-5)*a(n-1) +2*(7*n-8)*a(n-2) +4*(-2*n+7)*a(n-3)=0. - R. J. Mathar, Jul 26 2022